Haplo Prediction
predict haplogroups
Functions
nb_freq.c File Reference

Naive Bayes non-parametric marker frequency classifier. More...

#include <config.h>
#include <stdlib.h>
#include <stdio.h>
#include <inttypes.h>
#include <assert.h>
#include <string.h>
#include <errno.h>
#include <math.h>
#include <libxml/tree.h>
#include <libxml/parser.h>
#include <libxml/valid.h>
#include <jwsc/base/error.h>
#include <jwsc/base/limits.h>
#include <jwsc/base/file_io.h>
#include <jwsc/vector/vector.h>
#include <jwsc/vector/vector_io.h>
#include <jwsc/vector/vector_math.h>
#include <jwsc/matrix/matrix.h>
#include <jwsc/matrix/matrix_io.h>
#include "xml.h"
#include "haplo_groups.h"
#include "nb_freq.h"

Go to the source code of this file.

Functions

void train_nb_freq_model (NB_freq_model **model_out, const Vector_u32 *labels, const Matrix_i32 *markers, const Vector_d *label_priors)
 Trains a Naive Bayes non-parametric marker frequency model.
Errorpredict_label_with_nb_freq_model (uint32_t *label_out, double *confidence_out, const Vector_i32 *markers, const NB_freq_model *model, uint32_t order)
 Predicts the label for a marker sample using a Naive Bayes non-parametric marker frequency model.
Errorpredict_labels_with_nb_freq_model (Vector_u32 **labels_out, Vector_d **confidence_out, const Matrix_i32 *markers, const NB_freq_model *model)
 Predicts the labels for a set of marker samples using a Naive Bayes non-parametric marker frequency model.
Errorread_nb_freq_model (NB_freq_model **model_out, const char *fname)
 Reads a Naive Bayes non-parametric marker frequency model.
Errorwrite_nb_freq_model (NB_freq_model *model, const char *fname)
 Writes a Naive Bayes non-parametric marker frequency model.
void free_nb_freq_model (NB_freq_model *model)
 Frees a Naive Bayes non-parametric marker frequency model.
static Errorread_nb_freq_xml_doc (xmlDoc **xml_doc_out, const char *xml_fname, const char *dtd_fname)
 Reads and and optionally validates an XML document.
static Errorcreate_nb_freq_model_tree_from_xml_node (NB_freq_model_tree **tree_out, const NB_freq_model_tree *parent, uint32_t parent_label, xmlNode *xml_node)
 Allocates and initializes a model tree from an xml node.
static Errorcreate_model_training_data (Vector_u32 **train_labels_out, Matrix_i32 **train_markers_out, const Vector_u32 *data_labels, const Matrix_i32 *data_markers, const Vector_u32 *model_labels, Vector_u32 *const *model_altlabels)
 Creates a set of training data as a model-specific labeled subset of a larger data set.
static Errortrain_nb_freq_model_node (NB_freq_model_node *node, const Vector_u32 *labels, const Matrix_i32 *markers)
 Trains a model in the tree using node-specific data.
Errortrain_nb_freq_model_tree (NB_freq_model_tree **tree_out, const Vector_u32 *labels, const Matrix_i32 *markers, const char *tree_xml_fname, const char *tree_dtd_fname)
 Trains a Naive Bayes non-parametric marker frequency model tree .
static Errorrecursively_predict_label_in_model_tree (uint32_t *label_out, double *confidence_out, const NB_freq_model_tree *tree, const Vector_i32 *markers_v, uint32_t order)
 Recursively predicts a label from a model tree.
Errorpredict_labels_with_nb_freq_model_tree (Vector_u32 **labels_out, Vector_d **confidence_out, const Matrix_i32 *markers, const NB_freq_model_tree *tree, uint32_t order)
 Predicts the labels for a set of marker samples using a Naive Bayes non-parametric marker frequency model tree.
static Errorread_nb_freq_model_node (NB_freq_model_node *node, const char *model_dirname)
 Recursively reads the model in a node from its file name.
Errorread_nb_freq_model_tree (NB_freq_model_tree **tree_out, const char *tree_xml_fname, const char *tree_dtd_fname, const char *model_dirname)
 Reads a Naive Bayes non-parametric marker frequency model tree from.
Errorwrite_nb_freq_model_tree (const NB_freq_model_tree *tree, const char *model_dirname)
 Writes a Naive Bayes non-parametric marker frequency model tree.
void free_nb_freq_model_tree (NB_freq_model_tree *tree)
 Frees a Naive Bayes non-parametric marker frequency model tree.

Detailed Description

Naive Bayes non-parametric marker frequency classifier.

Author:
Joseph Schlecht
License:
Creative Commons BY-NC-SA 3.0

Definition in file nb_freq.c.


Function Documentation

void train_nb_freq_model ( NB_freq_model **  model_out,
const Vector_u32 labels,
const Matrix_i32 markers,
const Vector_d label_priors 
)

Trains a Naive Bayes non-parametric marker frequency model.

Parameters:
model_outResult parameter. If *model_out is NULL, a model is allocated; otherwise its space is re-used.
labelsLabels for training, with ith element as corresponding to the ith sample in markers.
markersMarkers for training, with ith row as a sample corresponding to the ith label in labels.
label_priorsPriors for each of the labels. Set to NULL to used priors calculated from frequences in the training data.

Definition at line 90 of file nb_freq.c.

Error* predict_label_with_nb_freq_model ( uint32_t *  label_out,
double *  confidence_out,
const Vector_i32 markers,
const NB_freq_model model,
uint32_t  order 
)

Predicts the label for a marker sample using a Naive Bayes non-parametric marker frequency model.

Parameters:
label_outResult parameter.
confidence_outResult parameter.
markersMarker data to predict.
modelTrained model to use for predicting.
orderIndicates which of the The kth best prediction values to return. Starts with 0 representing the overall best, 1 the next best and so on.
Returns:
On success, NULL is returned; otherwise an error is returned.

Definition at line 269 of file nb_freq.c.

Error* predict_labels_with_nb_freq_model ( Vector_u32 **  labels_out,
Vector_d **  confidence_out,
const Matrix_i32 markers,
const NB_freq_model model 
)

Predicts the labels for a set of marker samples using a Naive Bayes non-parametric marker frequency model.

Parameters:
labels_outResult parameter. If *labels_out is NULL, it is allocated; otherwise its space is re-used.
confidence_outResult parameter. If *confidence_out is NULL, it is allocated; otherwise its space is re-used.
markersMarker data to predict. Each row is a sample for prediction, corresponding to an element in the result parameters.
modelTrained model to use for predicting.
Returns:
On success, NULL is returned; otherwise an error is returned, but the result parameters are not freed.

Definition at line 376 of file nb_freq.c.

Error* read_nb_freq_model ( NB_freq_model **  model_out,
const char *  fname 
)

Reads a Naive Bayes non-parametric marker frequency model.

Parameters:
model_outResult parameter. If *model_out is NULL, a model is allocated; otherwise its space is re-used.
fnameFile to read the model from.
Returns:
On success, NULL is returned; otherwise an error is returned but does not free result parameter.

Definition at line 433 of file nb_freq.c.

Error* write_nb_freq_model ( NB_freq_model model,
const char *  fname 
)

Writes a Naive Bayes non-parametric marker frequency model.

Parameters:
modelModel to write.
fnameFile to write to.
Returns:
On success, NULL is returned; otherwise an error is returned.

Definition at line 522 of file nb_freq.c.

void free_nb_freq_model ( NB_freq_model model)

Frees a Naive Bayes non-parametric marker frequency model.

Parameters:
modelModel to free.

Definition at line 594 of file nb_freq.c.

static Error* read_nb_freq_xml_doc ( xmlDoc **  xml_doc_out,
const char *  xml_fname,
const char *  dtd_fname 
) [static]

Reads and and optionally validates an XML document.

Definition at line 607 of file nb_freq.c.

static Error* create_nb_freq_model_tree_from_xml_node ( NB_freq_model_tree **  tree_out,
const NB_freq_model_tree parent,
uint32_t  parent_label,
xmlNode *  xml_node 
) [static]

Allocates and initializes a model tree from an xml node.

Does not train or read the model; leaves the model field as NULL in each tree node.

Definition at line 660 of file nb_freq.c.

static Error* create_model_training_data ( Vector_u32 **  train_labels_out,
Matrix_i32 **  train_markers_out,
const Vector_u32 data_labels,
const Matrix_i32 data_markers,
const Vector_u32 model_labels,
Vector_u32 *const *  model_altlabels 
) [static]

Creates a set of training data as a model-specific labeled subset of a larger data set.

Definition at line 803 of file nb_freq.c.

static Error* train_nb_freq_model_node ( NB_freq_model_node node,
const Vector_u32 labels,
const Matrix_i32 markers 
) [static]

Trains a model in the tree using node-specific data.

Definition at line 874 of file nb_freq.c.

Error* train_nb_freq_model_tree ( NB_freq_model_tree **  tree_out,
const Vector_u32 labels,
const Matrix_i32 markers,
const char *  tree_xml_fname,
const char *  tree_dtd_fname 
)

Trains a Naive Bayes non-parametric marker frequency model tree .

Parameters:
tree_outResult parameter.
labelsSample group labels.
markersSample marker values.
tree_xml_fnameXML file containing the model tree information.
tree_dtd_fnameDTD file for validating the XML file, can be NULL.

Definition at line 924 of file nb_freq.c.

static Error* recursively_predict_label_in_model_tree ( uint32_t *  label_out,
double *  confidence_out,
const NB_freq_model_tree tree,
const Vector_i32 markers_v,
uint32_t  order 
) [static]

Recursively predicts a label from a model tree.

Definition at line 974 of file nb_freq.c.

Error* predict_labels_with_nb_freq_model_tree ( Vector_u32 **  labels_out,
Vector_d **  confidence_out,
const Matrix_i32 markers,
const NB_freq_model_tree tree,
uint32_t  order 
)

Predicts the labels for a set of marker samples using a Naive Bayes non-parametric marker frequency model tree.

Parameters:
labels_outResult parameter. If *labels_out is NULL, it is allocated; otherwise its space is re-used.
confidence_outResult parameter. If *confidence_out is NULL, it is allocated; otherwise its space is re-used.
markersMarker data to predict. Each row is a sample for prediction, corresponding to an element in the result parameters.
treeTrained model tree to use for predicting.
orderThe kth order prediction value. Zero being the best prediction.
Returns:
On success, NULL is returned; otherwise an error is returned, but the result parameters are not freed.

Definition at line 1032 of file nb_freq.c.

static Error* read_nb_freq_model_node ( NB_freq_model_node node,
const char *  model_dirname 
) [static]

Recursively reads the model in a node from its file name.

Definition at line 1084 of file nb_freq.c.

Error* read_nb_freq_model_tree ( NB_freq_model_tree **  tree_out,
const char *  tree_xml_fname,
const char *  tree_dtd_fname,
const char *  model_dirname 
)

Reads a Naive Bayes non-parametric marker frequency model tree from.

Parameters:
tree_outResult parameter.
tree_xml_fnameXML file containing the model tree information.
tree_dtd_fnameDTD file for validating the XML file, can be NULL.
model_dirnameDirectory prefixing each model file in the tree.

Definition at line 1122 of file nb_freq.c.

Error* write_nb_freq_model_tree ( const NB_freq_model_tree tree,
const char *  model_dirname 
)

Writes a Naive Bayes non-parametric marker frequency model tree.

Parameters:
treeModel tree to write.
model_dirnameDirectory to prefix to each model file in the tree.

Definition at line 1174 of file nb_freq.c.

void free_nb_freq_model_tree ( NB_freq_model_tree tree)

Frees a Naive Bayes non-parametric marker frequency model tree.

Parameters:
treeModel tree to free.

Definition at line 1209 of file nb_freq.c.