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ABSTRACT

Recognizing objects in images is an effortless task for most people. Automating this task

with computers, however, presents a difficult challenge attributable to large variations in

object appearance, shape, and pose. The problem is further compounded by ambiguity

from projecting 3-D objects into a 2-D image. In this thesis we present an approach

to resolve these issues by modeling object structure with a collection of connected 3-

D geometric primitives and a separate model for the camera. From sets of images we

simultaneously learn a generative, statistical model for the object representation and pa-

rameters of the imaging system. By learning 3-D structure models we are going beyond

recognition towards quantifying object shape and understanding its variation.

We explore our approach in the context of microscopic images of biological structure

and single view images of man-made objects composed of block-like parts, such as fur-

niture. We express detected features from both domains as statistically generated by an

image likelihood conditioned on models for the object structure and imaging system. Our

representation of biological structure focuses on Alternaria, a genus of fungus comprising

ellipsoid and cylinder shaped substructures. In the case of man-made furniture objects,

we represent structure with spatially contiguous assemblages of blocks arbitrarily con-

structed according to a small set of design constraints.

We learn the models with Bayesian statistical inference over structure and camera

parameters per image, and for man-made objects, across categories, such as chairs. We

develop a reversible-jump MCMC sampling algorithm to explore topology hypotheses,

and a hybrid of Metropolis-Hastings and stochastic dynamics to search within topologies.

Our results demonstrate that we can infer both 3-D object and camera parameters simul-

taneously from images, and that doing so improves understanding of structure in images.

We further show how 3-D structure models can be inferred from single view images, and

that learned category parameters capture structure variation that is useful for recognition.
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CHAPTER 1

Introduction

A central challenge in computer vision is automatically recognizing and understanding

information captured in images. Humans have an amazing capacity to effortlessly ac-

complish this everyday. We open our eyes and immediately recognize people, cars, trees,

landmarks, and situations, like danger or safety. Even when confronted with large varia-

tions in object appearance, we immediately recognize examples of diverse classes, such

as birds and plants. Moreover, when the view of an object is severely obstructed, we

readily imagine what has been concealed. For example, describing the parts of a chair

hidden from view by a table and estimating their location is an easy task for most people.

This suggests that our representation for object classes abstracts away distinctive structure

information from specific instances and assists us in recognition under unseen views and

appearance.

Recognition for computers, unfortunately, is not as easy. Simply providing images

from a camera to a computer yields no more than a collection of numbers representing

pixel intensities. We must instead devise algorithms that interpret the information en-

coded in these numbers. History suggests this is a difficult problem. Indeed, researchers

have been trying to solve problems in computer vision for over four decades. As a result,

the path of development through vision related algorithms is lengthy and punctuated with

many successes (Section 1.4), but never achieving a fully functioning vision system.

In the early days of vision, much work in recognition was done with three-dimensional

representations. It was well understood that three-dimensional representations provide

significantly more information about 3-D objects in the world than just what is projected

into a 2-D image. These model-based approaches focused on matching a known three-

dimensional model to single view images (Clowes, 1971; Binford, 1971; Brooks, 1981;

Pentland, 1987; Huttenlocher and Ullman, 1990) and described how an object category

could be represented with a base set of three-dimensional parts or components (Winston,
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1975; Biederman, 1987). A limitation these approaches shared, however, was the inability

to automatically learn structure models for object classes; the models were assumed to be

provided prior to analysis. Further, they did not generalize well to the variation within

object classes. Today, modern approaches have focused on learning statistical models

over appearance patterns and their 2-D spatial arrangement in images (Fergus et al., 2003;

Leibe et al., 2004; Sivic et al., 2005; Shotton et al., 2005; Ferrari et al., 2009). These

view-based representations go much further towards capturing class variation due to their

statistical nature. But because the models exist only in two-dimensions, the structure

variation is confounded with object view and pose. In our approach, we propose building

on key ideas from both of these directions: learning 3-D representations with a statistical

model over structural variation.

In this thesis we develop the idea of learning three-dimensional, part-based represen-

tations of object classes from images. The work presented here can be grouped into three

primary aspects of our approach: the idea of using a three-dimensional representation

for object classes and their structure (Section 1.1), basing an object representation on an

assemblage of geometric primitives which loosely correspond to human-identifiable parts

(Section 1.2), and modeling images as statistically generated by three-dimensional object

representations (Section 1.3).

We explore this approach in the context of two related problems: inferring repre-

sentations of biological structure and man-made objects composed of easily identifiable

block-like parts, such as furniture. For biological structure, we infer a connected set of ge-

ometric primitives that follow a specimen-specific pattern of growth described by a gram-

mar. In the case of block based objects, we do not use an explicit grammar to describe the

structural organization, but still learn models of connected structure from a vocabulary of

primitives. In both types of structure we present algorithms to infer instances of our 3-D

geometric models from images. While fitting our block model to images, however, we

go beyond inferring individual instances and illustrate the process of learning whole cat-

egories of structure for object classes. We could extend the biological model in the same

way to learn category descriptions for biological structure, thus enabling, for example, a

quantitative description of species.
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Although biological and man-made structures come from two completely different

domains of object categories, our approach to learning them successfully shares a similar

representation and inference process. Both types of structure utilize three-dimensional

representations and a vocabulary of geometric primitives. Further, the structure mod-

els are built upon similar statistically generative frameworks. When combined with a

model of the imaging system, we can use these to generate instances of observed data.

For learning both biological and man-made structure models, we design similar Bayesian

inference algorithms and implement trans-dimensional Markov chain Monte Carlo sam-

pling. Finally, while the imaging systems capturing data in each case are potentially quite

different, e.g., a microscope with compound optics capturing stacks of images versus a

simple camera imaging single views, we abstract them away from the structure model, en-

abling similar inference of both. This is a unique characteristic to our approach, removing

confounding effects that the imaging system can have when capturing data.

The following sections of this introduction give a brief overview of the main points

in our approach, followed by a related work section. In Chapter 2, we present our ideas

and methods for modeling independent, three-dimensional parts of biological structure in

microscopic images. Chapter 3 extends that work to inferring complete structure models

guided by a biologically-inspired grammar that describes patterns of growth. Chapter 4

shifts the focus to fitting models of man-made objects composed of block-like parts to

single view images. Lastly, Chapter 5 explores learning the assemblage of blocks that can

represent an object category and how to infer its instances from sets of 2-D images.

1.1 Three-dimensional representation

We develop an approach to object recognition that focuses on learning three-dimensional

geometric representations for object structure. Captured images of an object give two-

dimensional views of what is actually three-dimensional. If we understand the three-

dimensional representation of an object, we can explain its projected 2-D image obser-

vations, even under challenging conditions. This includes situations where the object is

heavily occluded or viewed from an angle that has not been seen before. A 3-D geometric
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model for object structure is a strong representation able to disambiguate many projected

2-D configurations. The utility of such models goes beyond just recognition; they can be

used to quantify, localize, and interact with objects in three-dimensions, enabling their

application to many other vision tasks.

By using a three-dimensional representation, we can separate the object model and its

pose from the imaging system capturing it. This simplifies the process of understanding

observed images. For example, if we model multiple objects in a scene, separating cam-

era from object reduces the difficulty of inference considerably because all objects with

similar orientations in a scene agree on a single camera configuration. This shared view

can further reinforce weak detections of other objects in the scene that may not have been

correctly identified under a different view.

An alternative to separating the view from an object model is building a spatial repre-

sentation into the image plane. These view-based approaches learn representations whose

appearance includes information about the camera (Fergus et al., 2003; Fei-Fei et al.,

2004; Leibe et al., 2004; Sivic et al., 2005; Shotton et al., 2005; Opelt et al., 2008; Fer-

rari et al., 2009). This leads to an interesting confusion that can occur with 2-D spatial

representations—changes in the appearance of model geometry encode both structural

and view information. Rather than worry about resolving this ambiguity, our geometry

model is in three-dimensions and separately represents the camera capturing views of it.

Thus there is a clear separation between changes in geometry and view. Two-dimensional

representations have tried to avoid the problem of not knowing the camera by using fea-

tures that are somewhat view invariant (Berg and Malik, 2001; Belongie and Malik, 2001;

Lowe, 2004; Kadir et al., 2004; Ferrari et al., 2008). But they are still limited by feature

representations that exist only in the image space of two dimensions.

There are other reasons for pursing three-dimensional models over view-based repre-

sentations. The three-dimensional structure of an object is often closely linked to what

it is used for or what it is doing. For example, a structure with four supporting blocks

under a larger flat block, such as a table, is good for setting things on. Understanding the

semantics of this structure can lead to learning about other structures by recognizing sim-

ilarities. For example, if a vision system recognizes the shared structure between a table
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and chair, it should also learn that chairs are useful to support things. In the biological

domain form is also frequently tied to function. A certain pattern of growth of one species

of fungus can indicate that its objective is feeding and reproduction, while another spatial

arrangement can imply conservation of energy. Understanding the structure of an object

in the three-dimensional world that it exists can enable us to see how it interacts with the

world, or how it can be used to interact with the world.

Another advantage of 3-D models is the capacity for quantification. Understanding

the size and volume of an object in the world, requires a representation that captures

quantitative information beyond simply counting pixels in the image plane. A 3-D rep-

resentation enables computing exactly how large an object is in the world. We can also

extract relative information about object parts, like angles between part attachments or

ratios of sizes. This has benefits that extend to fields of biological research, where images

are often quantitatively analyzed for experimental purposes. Biologists are frequently in-

terested in how a change in experimental protocol affects the physiological or structural

properties of a specimen. With automated structural analysis in three-dimensions, we can

count, label, and quantify specimens independent of their view. We can also learn models

that quantitatively identify features or characteristics of a specimen that place it in a hi-

erarchy of species. In effect, we could build a tool to do automatic species classification.

With view-based approaches, the amount of ambiguity would be too great to discriminate

species-specific branching angles, since the branches could be away from the imaging

plane for a particular view.

Three-dimensional representations have clear benefits in interactive environments and

robotics applications. Inferred 3-D object models visualized in virtual environments fa-

cilitate interactive shape and function exploration. In robotics, 3-D models can be utilized

to understand where in the real world an object is located. Although the exact function of

an object may not be known, just understanding where the object is positioned and its 3-D

shape enables manipulating or avoiding it. Further, if a robot has the ability to recognize

parts of the object, it could then manipulate those parts as well.

Modeling objects in three-dimensions with our approach is not without challenges,

however. A major problem is how to extract three-dimensional information from single
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two-dimensional images. Consider the common case that the orientation and position of

the camera creating the images is unknown. This leads to the under-constrained problem

of trying to find the correct configuration for a camera and pose of an object producing

the observed image. Starting from a single view image of an object, this can be difficult;

however, cues from perspective projection of parallel lines and simultaneously fitting 3-D

geometric models of structure aid in the recovery process by constraining the possible

views of the camera.

1.2 Objects as assemblages of parts

We propose a strong representation for objects that comprises three-dimensional geo-

metric primitives assembled into a connected structure. We believe that objects can be

represented by a set of 3-D geometric parts, and that we can learn assemblages of these

parts from images. We have chosen geometric primitives such as blocks, cylinders, and

ellipsoids to represent object parts. An advantage of representing objects with a set of ge-

ometric primitives is that they often correspond to what humans might identify as parts.

Another reason a part-based representation might be helpful is in identifying certain sub-

structures of the object category; our man-made objects and biological specimens have

substructures that closely resemble our set of chosen primitives. Representing basic parts

of an object also allows part grouping at higher levels, so we can learn configurations of

these primitives and their shared substructures across categories. Finally, having a part-

based level of detail for structure representation enables quantification of a subset or all

of an object.

Three-dimensional alternative representations that do not specifically model parts in-

clude organization of 2-D feature patches and their relative transformations approximat-

ing foreshortening (Savarese and Fei-Fei, 2007, 2008), space carved 3-D object vol-

umes (Hoiem et al., 2007), or even extracted three-dimensional surfaces (Amenta and

Bern, 1999; Levin, 2003). Although the representation in these approaches is three-

dimensional, they lack the ability to identify quantitative information about the detected

parts. Furthermore, Savarese and Fei-Fei (2007, 2008) are unable to localize parts of the
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object because their representation is only a collection of surface patches with relative

orientations in 3-D. Learning about shared structure in volume-based approaches is not

possible due to the individual parts not being identified. In contrast, our approach repre-

sents objects with 3-D parts that can be identified across object categories and localized

in three dimensions.

The idea of object representation as a set of primitive parts is similar to recognition-

by-components proposed by Biederman (1987). In our case, we assume that the available

set of geometric primitives comprise easily identifiable parts of an object, e.g., blocks

for legs of tables and chairs. While the pairings of blocks, ellipsoids, and cylinders to

parts may not always be the same labeling a human might identify, it is a starting point

to reasoning about substructure within an object class. Another characteristic we share

with recognition-by-components is that the number of objects we recognize is limited by

our vocabulary of primitives. An idea for extending this work is to learn the vocabulary

of parts from images based on criteria such as which parts offer the most discriminative

power.

Parameterizing our structure model on the part-level enables capturing information

about structure variability with respect to parts. For example, we could learn from a cat-

egory model of chairs that the structural variation is primarily divided among those with

armrests and those without. Or for tables, the number of legs under the table-top or the

shape of the table-top—that it is rounded or square. Having a part-based representation

enables an understanding of this variability. In the biological context, we learn about

frequencies of particular substructures. This could be particularly useful if one of the

substructures is identified as being important for reproduction of a specimen.

A part representation in three-dimensions is much more helpful in an interactive or

robotics setting than a simple volume or surface reconstruction. The robot or machine has

a good starting point for knowing where on an object to grasp to manipulate it. Knowing

which pieces of an object can be independently controlled is useful in many cases, for

instance opening the door of a car or pressing buttons on a phone. With a volumetric

approach we would not be able to identify these individual parts for manipulation. We can

further ascribe specific knowledge of part function to an object, for example the support
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offered by armrests to a chair, or which substructures are reproductive to a biological

specimen.

The primary difficulty with this approach is learning a meaningful assemblage of

primitives from our vocabulary that represents an object class. An easier approach would

be to hand craft assemblages or rely on external object models. Constructing a 3-D model

for each object in the world is not feasible, however, so we aim to learn them from im-

ages. The challenge is that our parameter space over object parts is large, of unknown

dimension, and has many local minima in the energy function used for learning due to

ambiguity. To quantify uncertainty about which object model best fits a set of images,

we develop a Bayesian statistical framework over parameters and a trans-dimensional

sampling algorithm for inference.

1.3 Stochastic generative model

We consider the observed image data of an object as generated by a statistical model

for an object category and the camera viewing it. The model has multiple generative

levels spanning a general category representation to detectable image features. In the

most general case (Chapter 5) we first generate an object category. The model for an

object category contains statistical information for an object that captures its variance

across images. This includes both structural and appearance information. In this way we

represent the variation that an object category has in its topological structure and visual

appearance.

Conditioned on a sampled category, we sample an instance of the object from the

category statistics. The generated instance includes the specific size, shape, and pose of

an object. We also sample a camera capturing the specific view of the object in an image.

The process for generating an instance of the biological and man-made structure models

is similar, but each has different shape primitives. For example, in Chapters 2 and 3 where

we represent biological structure, the generated shapes include ellipsoids and cylinders;

in Chapters 4 and 5 where we learn man-made structures like furniture, the generated

shapes are blocks. In both cases the size, position, and attachment points are generated
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from the category model.

Once we have generated instances of the object model and camera capturing the im-

age, we can generate projected detectable image features. There are many different types

of image features one could model. In our case, we investigated using projected object

contours to generate edge points in the image and the surface of the object to generate

foreground. For the edge points, we say that, conditioned on the object and camera mod-

els, each edge point is independently generated by a point on the object contour with

Gaussian error in its contour distance orientation. In this way we generate features as

they might be detected by a gradient-based edge detector. The generative process for

other features are modeled in the same fashion.

Given a set of images containing objects from a category, we would like to infer,

or learn, the best fitting set of parameters under our model for the category. To do this

we will reverse the generative process through a Bayesian posterior distribution over the

parameters conditioned on images. By combining the distributions at each level of our

statistical generative model and some relatively uninformative prior information. we can

create a process for statistical inference of our model under observed images. We can then

use Bayesian inference to find the object category parameters and particular instances that

fit the data well.

A statistical model for 3-D objects is powerful, but learning its parameters from data

is challenging. We present Markov chain Monte Carlo sampling algorithms for maximum

posterior estimates. The basic idea of MCMC sampling is to construct a chain of memory-

less state transitions that iteratively generate random samples from a distribution, and that

over time converges to the target distribution. In our application, once the convergence

takes place, the subsequent samples are likely close to the maximum of the posterior.

This is because we construct a density function with most of its mass on a small region

of parameter space—where our object model visually matches well with the image data.

We then use the generated samples with highest probability as our best fitting model.

Using a generative representation has a number of advantages. We have a probabilis-

tic way to detect an object in an image and determine how good that detection is. From

an instance that is fit well to the data, we can further say that some part of the object is
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missing from the detection. So if part of the structure an image is not observed, we can

hallucinate its presence. This provides a simple and effective way to deal with occlusion.

We can also utilize the statistics over object structure in our model, enabling formal state-

ments about estimates of appearance and structure variation within an object category.

Finally, since we have a probability distribution over model parameters, we could include

higher-level inference about objects. We could, for example, apply a risk function, which

would be particularly useful in the biological imaging context.

In Chapters 2 and 3 we introduce a 3-D biological structure model for microscopic

fungus of the genus Alternaria and statistical inference algorithms that fit instances of

it to microscope image data. The details of these chapters are based on our previous

work published in Schlecht et al. (2006) and Schlecht et al. (2007). In Chapters 4 and 5

we develop similar ideas but for more general object structure, which we base on an

expansion of our previously published work in Schlecht and Barnard (2009a) and Schlecht

and Barnard (2009b). Additionally, in Chapter 5 we show how to infer not only instances,

but the object category as well. What is developed in these last chapters for general

structure could be applied to our earlier biological structure model as well. Together,

these chapters present our approach for using a statistical generative model and three-

dimensional object representations.

1.4 Related work

The following works in the literature have served as inspiration for our ideas and ap-

proach presented in this thesis. We describe their relevance in groups based on how

related they are to model-based vision (1.4.1), view-based vision (1.4.2), grammars and

topologies (1.4.3), biological structure (1.4.4), and statistical inference (1.4.5).

1.4.1 Model-based vision

Researchers have represented object structure with three-dimensional models in vision for

a long time. For much of that time, however, the model was assumed to be known. These

approaches are often referred to as model-based vision. One of the major challenges
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encountered in model-based vision is deciding the type of 3-D model to use for represent-

ing objects and how to match it to projections in an image. Clowes (1971) was among

the first to explain two-dimensional line drawings of projected object contours with a

three-dimensional representation. Their model comprises planar, right-angled constructs

and matches corners and junctions of drawn lines with their contour correspondences in

three-dimensions. Sugihara (1984) proved that it is generally possible to represent 2-D

line drawings as projections of 3-D polyhedral scenes. Winston (1975) developed an

idea for connecting three-dimensional wire-frame blocks into a representation for simple

objects projected as line drawings.

Given a three-dimensional representation for an object, much work has been done

in model-based vision to detect its pose in an image. For example, Binford (1971) and

Brooks (1981) propose using a known model comprising generalized cylinders to capture

object structure in 3-D and match its views to 2-D images. Models comprising more

sophisticated parts, such as superquadrics, have been investigated as well (Pentland, 1987,

1990). In the latter case, however, fitting is done to range data, significantly constraining

the pose estimation. Lowe (1987, 1991) shows how to linearize the projection of a known

3-D model into the image plane and apply Newton’s method for matching contours in the

projected model to edges in a single image. Lowe (1991) also describes how to fit a more

complicated, but known, 3-D model with parametrized parts to single 2-D images using

the same edge matching and gradient descent algorithm. If a few correspondence points

are known between a given 3-D model and its projected image, Huttenlocher and Ullman

(1990) give a closed form solution for the transformation that maps one set of points to

another.

Biederman (1987) was among the first to propose a formal theory that the human vi-

sion system represents objects as compositions of 3-D geometric primitives. In this view,

a vision system recognizes objects by correctly assembling parts from a vocabulary of

basic 3-D geometric icons, referred to as geons. For a sufficiently sized vocabulary of

geons, they argue that most objects can be represented through composition, scaling, ro-

tation, and other transformation of the primitives. The idea of recognition by component,

challenged the assumption in model-based vision that a complete representation must be



26

known beforehand; that the model can be learned through grouping and fitting of smaller,

simpler structural parts. Indeed, for our approach we are heavily influenced by this con-

cept; that we can learn the composition of 3-D parts comprising the object structure.

In Pope and Lowe (1996) we see the transition of model-based approaches to learning

structure representations of 3-D shape under different views. Their representation is not

completely 3-D, however, and somewhat related to view-based approaches. They learn

a codebook of sequential 3-D views constructed from a training set; each view contains

statistics over appearance information for the object. They also construct a probability

density for matching detected features to points in their model. This probabilistic formu-

lation enables an understanding of variation within object classes.

1.4.2 View-based vision

More recently, vision research has moved away from explicit three-dimensional represen-

tations and focused on learning two-dimensional view-based models. The dependency of

relying on a provided set of 3-D models for each object category in the world was viewed

as unsustainable. Further, the complexity increase caused by three-dimensions was per-

ceived as excessive and unnecessary for simple detection and recognition problems in the

image plane. Given recent developments in pattern recognition and machine learning, the

focus has instead turned to learning 2-D statistical models over view-dependent image

patches and boundary fragments.

Fergus et al. (2003); Fei-Fei et al. (2003, 2004) presented an approach to learn two-

dimensional object category models based on a constellation of descriptive image patches

corresponding to parts. The model encodes patch appearance statistics and relative 2-D

spatial statistics over part relationships. Sivic et al. (2005) uses a bag of words topic

model (Hofmann, 2001; Blei et al., 2003) to learn object categories in unlabeled images.

They represent categories as document topics and appearance-based features as words

within a topic, creating a bag of features approach. Sudderth et al. (2005) describe a hi-

erarchical generative model for a statistical representation of 2-D image features, parts,

objects, and images. The learned parts are clusters of features that are shared across ob-

jects. Torralba et al. (2004) learn discriminative classifiers jointly for object detection that
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also share features, or parts, across subsets of object categories. When multiple 2-D views

of an object category are available, e.g., front and side views of a car, they further show

that parts appearing in different views can be learned as shared. Leordeanu et al. (2007)

and Kushal et al. (2007) learn statistics over 2-D part models, but with more emphasis on

geometric constraints over spatial arrangement of parts. Leordeanu et al. (2007) focuses

on pairwise geometric relationships among parts, while Kushal et al. (2007) models affine

transformations relating 2-D views of image patches across an object category. Crandall

and Huttenlocher (2006) present an algorithm for learning part-based models over both

image appearance patches and their geometric relations. Their approach differs from oth-

ers by simultaneously learning statistics over part appearance and spatial arrangement in

a weakly supervised manner.

Other approaches have successfully created discriminative view-based algorithms that

rely on detecting two-dimensional parts in images. Leibe et al. (2004) presents a gener-

alized Hough voting approach to construct implicit 2-D shape models for object cate-

gories based on a codebook of distinctive image patches. Detection proceeds by match-

ing patches in a test image to the codebook and accumulating votes for the object center.

Shotton et al. (2005) uses projected object contours for detection rather than appearance

information from image patches. They present an algorithm to learn a set of 2-D bound-

ary fragments for an object class that is organized into a star pattern. When matched with

detected edges in an image, the fragments identify the object center. Opelt et al. (2008)

combine patch appearance and boundary fragment models into a voting framework for

object detection. Local fragments and patches are matched against a learned codebook,

which then vote for the object location. Dalal and Triggs (2005) shows that collecting

responses of oriented gradient filters in simple histograms of overlapping image windows

provide an effective means for capturing discriminative 2-D object shape.

Many of these view-based approaches rely on groups of detected 2-D features that

are somewhat invariant to object scale, pose, and view (Belongie and Malik, 2001; Berg

and Malik, 2001; Lowe, 2004; Kadir et al., 2004; Ferrari et al., 2008). Although some

approaches have attempted to learn transformations that relate appearance of these fea-

tures under different views (Kushal et al., 2007), large changes in pose or viewpoint are
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typically not tolerated. This is particularly true if the change in viewpoint reveals a side

of the object not encountered during training. Thus these models must be learned for each

canonical view of an object category.

A key component of our approach is modeling detected image features as 2-D projec-

tions generated by our 3-D representation for object structure. For recognition we aim to

use a statistical inference and recover 3-D information from 2-D image data. Recent view-

based methods have shown how to recover and utilize depth information in single view

images for multi-view object detection. Saxena et al. (2005) applies supervised learning

to recover depth maps from difficult outdoor scenes in single view images. Hoiem et al.

(2005, 2006) recovers depth information for single view images by assuming that most

pixels align with one of three primary planes in the world. Based on perspective cues

in image regions with similar texture, they learn which of the planes each pixel is posi-

tioned on. The estimated depth map is then used it to put object detectors into the correct

perspective. Hoiem et al. (2007) proposes improving detection and recognition with a

volumetric 3-D model estimated from training data for each object category. Statistics

over appearance and shape are then registered onto the 3-D model for use by an object

category detector under multiple views. Liebelt et al. (2008) follows a similar approach

to Pope and Lowe (1996) by showing how a 3-D model can improve view-based object

detection. They train a codebook for feature matching on discretized 2-D views of the

model.

Another idea put forward recently for recognition under multiple views combines a

statistical model over patches with their estimated pairwise three-dimensional relation-

ships. Savarese and Fei-Fei (2007, 2008) uses a statistical representation over part ap-

pearances similar to other view-based methods, but the shape information captures 3-D

viewpoint relationships with affine transformations between pairs of patches. For each

patch, or part, they learn transformations to describe how it looks when viewed from an

adjacent part, e.g., whether it is scaled (foreshortened), rotated, or translated. While this

approach captures implicit 3-D information through patch relationships, it does not de-

fine a complete structure model that could be utilized in areas outside detection, such as

robotics applications.
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1.4.3 Grammars and topologies

In both of our biological and man-made object models, we represent object structure as a

topology generated by as set of rules comprising a grammar. The geometric primitives in

our structure models, such as ellipsoids, cylinders, and blocks, belong to the grammar vo-

cabulary; rules for attachment define how elements of the vocabulary are used to construct

topologies. Some of the inspiration for this work comes from Han and Zhu (2005), where

they develop a grammar for parsing groups of object parts in an image. Their grammar

vocabulary consists of 2-D rectangle groups, with rules for alignment and symmetry used

to parse windows, kitchen scenes, and other 2-D block objects. Tu et al. (2005) extends

the concept of image parsing to segmentation and identifying meaningful regions in an

image. They develop a generative model for image composition based on a parse graph

and bottom-up, discriminative detections. Zhu and Mumford (2006) pushes the idea of

parsing images further into developing a grammar for images. Zhu et al. (2006) learns

a grammar of Markov random fields for grouping appearance-based 2-D image patches.

We have also been influenced by Tenenbaum et al. (2006); Kemp and Tenenbaum (2008),

where they seek to learn topological structure automatically from data.

1.4.4 Biological structure

Algorithms that extract 3-D object structure from images have been applied in the biolog-

ical domain for some time. The potential impact of structure quantification and analytical

analysis has driven much exploration in this area. Pawley (1995) and Cheng et al. (1994)

contain large collections of works on processing 3-D biological images. Unlike most

of these, however, our approach is built upon Bayesian statistical framework. Grenan-

der and Miller (1994) was among the first to apply a Bayesian approach to fitting 2-D

structure in medical images. They demonstrate how deformable templates can be fit to

mitochondria cells using an informal trans-dimensional sampler. Al-Awadhi (2001) and

Al-Awadhi et al. (2004) fit geometric shapes to cartilage tissue but formalizes the trans-

dimensional inference using reversible jump Markov chain Monte Carlo (Green, 1995).

Song et al. (2002) applies Bayesian inference to estimate 3-D models of heart ventricles
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from echocardiograms. The general form and dimensionality of their ventricle model is

fixed, and they find the best fitting parameter values through a maximum a posterior esti-

mate with the EM algorithm. Other modern attempts at extracting tubular filament struc-

ture from biological images utilize median-based filters. For example, Can et al. (1999)

traces retinal veins and Can et al. (1999); Al-Kofahi et al. (2002, 2003) follow the paths of

neurons in three-dimensional stacks of confocal microscope images. While our approach

is similar to many of these in our choice of statistical inference, we model biological

structure, specifically microscopic plants and cells, in a much different way. To extract

3-D structure information from microscopic images, we represent biological specimens

as a collection of parts whose assemblage is generated by a grammar for global specimen

structure (e.g., L-systems Lindenmayer, 1968, 1975).

1.4.5 Statistical inference

Our model of three-dimensional object structure has potentially many parameters for the

geometric primitives and their attachments. Inference of our Bayesian posterior over

the parameters is challenging analytically, so we pursue a Markov chain Monte Carlo

sampling strategy. Tierney (1994) first described an MCMC sampling algorithm for ex-

ploration of Bayesian posterior distributions. To switch between parameter subspaces of

differing dimensionality, Green (1995, 2003) proposed a reversible-jump MCMC sam-

pling algorithm. The algorithm guarantees converges to the target density function and

draws samples of varying dimensions, which is shown useful for model selection. Forsyth

et al. (2001) and Andrieu et al. (2001) review MCMC approaches for Bayesian posterior

inference with applications to vision problems. Kaess et al. (2004) details a reversible-

jump MCMC application to the vision problem of fitting piece-wise curves to 2-D shape

models. Unfortunately, MCMC sampling convergence to the target distribution can some-

times require long runs of the sampler. To speed this process up, Zhu et al. (2000); Tu et al.

(2002) propose a data-driven MCMC algorithm that preprocesses the data with respect to

parameter state-space. This enables generating acceptable proposals in the sampling al-

gorithm with much higher frequency and accelerates convergence. In our approach to

modeling 3-D structure, we create a reversible-jump MCMC sampling algorithm that uti-
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lizes a data-driven process for increased sampler convergence rate and inference that is

more accurate after a reasonable amount of time than standard proposal distributions.
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CHAPTER 2

Inferring 3-D Biological Structure and Microscope Models

2.1 Introduction

In this chapter we detail a new method for automatically detecting and quantifying three-

dimensional structure elements of biological specimen that counteracts the blurring ef-

fects of a microscopic imaging system. Quantifying the structure of cells and organisms

is important for many biological experiments, but this process can be expensive and time

consuming when done manually. A method to automatically detect, quantify, and clas-

sify the three-dimensional structure of specimen in microscopic images would enable

high-throughput data analysis, improved experimental efficiency, and possibly lead to in-

creased frequency of scientific discoveries.

The challenges in creating such an algorithm for analyzing microscopic data lie not

only in the detection of structure, but in understanding the image formation process of

the microscope. Depending on the type of microscope used, images of a specimen under

view may contain a significant amount of blur from out-of-focus regions. In a standard

compound microscope with high magnification, this is a result of a shallow depth of

field. Thus, the optical system of a microscope can make accurate localization of detected

structure in images more difficult.

To detect and quantify the structure of biological specimen in microscopic images, we

propose a model that stochastically generates the observed data. A set of 3-D geometrical

objects model the structure of the specimen under study, and a theoretical impulse re-

sponse of the microscope models the optical system. Using Bayesian statistical inference

and Markov chain Monte Carlo sampling, we fit both of these models simultaneously to

microscopic image data with mutual benefit; information learned from inferred specimen

structure is used to learn model parameters of the imaging system and vice-versa.

The impulse response, or point spread function, of the microscope’s optical system
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blurs the observed image data. Learning a model of the point spread function (PSF)

enables an understanding of the image formation process in the microscope. This permits

us to hypothesize unblurred images of the specimen and obtain a more accurate fit to its

structure. Moreover, using a model to learn the PSF from image data facilitates inferring

structure that has been imaged under a range of optical systems.

The effects of a PSF are shared by all images a microscope captures. Although in this

work we infer structure and PSF models from image data sets independently, we could

learn the PSF in conjunction with fitting structure in multiple data sets at once. When

sufficiently fit, our learned model of the PSF could be used to detect structure in future

data sets more robustly and with less computation.

2.1.1 Scientific motivation

Understanding the morphological structure of an object by modeling it and automatically

fitting it to data yields valuable quantitative information that creates further insight into

function. For a biologist interested in analyzing microscopic specimen, automatically in-

ferred structure enables a high-throughput data analysis system to improve experimental

efficiency and increase the frequency of scientific discoveries. Moreover, the function of

a specimen is often captured in other modes of data, such as gene expression data, pro-

viding opportunities to learn a coupling with structural information learned in the fitting

process. Multi-modal data linking can reveal new functional information that was not pre-

viously available due to limitations in manual structure quantification. Finally, our model

is of the complete structure, and once fit to data, can be used for visualization in virtual

environments and three-dimensional printing for tactile exploration.

The data used in this research are 3-D images of Alternaria, a genus of fungus, cap-

tured by a standard brightfield transmitted-light microscope. The images are 3-D in the

sense that the mycologist who captured them continuously imaged the specimen while

increasing the focal depth of the microscope, a process commonly referred to as 3-D

microscopy. Figure 2.1 shows images from two of these sets, A1 and A2. Notice the

significant blur in the images, a result of the optics in the transmitted-light microscope.

The general form of Alternaria is tree-like with species-dependent branching pat-
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(a) 36 of 102 in A1 (b) 48 of 102 in A1

(c) 13 of 82 in A2 (d) 53 of 82 in A2

Figure 2.1: Images from Alternaria 3-D data sets A1 and A2. In each image, the point-
spread function of the brightfield transmitted-light microscope generated blur from nearby
focal planes. Alternaria comprises two primary substructures: elliptical shaped spores
used for reproduction and cylindrical shaped hyphae involved in nourishment collection.
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terns. It comprises tubular filaments, known as hyphae, and ellipsoid-shaped reproduc-

tive spores that are darkly pigmented. Branching typically occurs as a bifurcation of

the hyphae, but it may occur in the spores as well. Species of Alternaria are frequently

found in soil and organic debris and are estimated to contribute to 25-50% of agricultural

spoilage (Wilson and Wisniewski, 1994). They are also among the most common potent

airborne allergens (Wilken-Jensen and Gravesen, 1984) and one of the most prodigious

producers of toxic chemicals, some of which have been linked to forms of cancer (Gui-

Ting et al., 1992). For these reasons, Alternaria is heavily analyzed by mycologists in

order to better understand its functionality and discover methods that reduce its effects.

Following a discussion of related work in Section 2.2, we present a stochastically gen-

erative approach in Section 2.3. We model the reproductive spores of Alternaria with in-

dependent ellipsoids and the 3-D microscopic imaging system with a parameterized point

spread function. In Section 2.4 we describe the process for Bayesian statistical inference

of our models. Sections 2.5 and 2.6 present our sampling algorithm for inference of both

the structure and imaging models simultaneously from data. Finally, in section 2.7 we

give some results of this inference process. In Chapter 3 we continue to build on the fun-

damentals developed in this chapter and present a more complete structure model using a

stochastic grammar and methods of inference from the same images used here.

2.2 Related work

Extracting biological structure information from microscopic images is important for

many scientific inquiries. Collecting three-dimensional stacks of images has been com-

mon among biologists for some time, and much effort has been made in developing meth-

ods to process, quantify, and visualize this data (Section 1.4.4; Samarabandu et al., 1994;

Boxall et al., 1994).

More recent approaches have focused on Bayesian statistical inference of known bi-

ological structure models from images (Grenander and Miller, 1994; Song et al., 2002).

In most of these cases, however, the model representing structure was given beforehand.

In an approach perhaps most closely related to ours, Al-Awadhi et al. (2004) show that a



36

Bayesian model for a variable number of ellipses could be inferred from images of car-

tilage cells formed under a confocal microscope. This analysis enabled quantification of

the cells in the image and their variation. However, because the model is in two dimen-

sions and the structure of the cells exists in three, further quantitative analysis was not

possible. To address this issue, a 3-D model for fitting ellipsoids to the cells in a stack of

images was proposed by Al-Awadhi (2001), but the method of inference resulted in poor

performance.

Many of the images captured by microscopes for analysis are from expensive con-

focal microscopes. We pursue a solution for images captured by standard brightfield

microscopes. While less expensive, brightfield microscopes pose a greater challenge in

analysis; they generate substantial blur in the imaging plane. The optical system of a

confocal microscope attempts to minimize the aberrations, flare, and blurring potential of

its PSF, thus reducing blur in its images (Pawley, 1995; Chen et al., 1995; Conn, 1999;

Webb, 1999; Kong et al., 1999). Previous studies in statistical inference of structure mod-

eled the PSF of a confocal microscope with a Gaussian function, but the parameterization

was obtained by preliminary, manual analysis of the image data (Al-Awadhi et al., 2004;

Al-Awadhi, 2001). Furthermore, because of the minimal blur in the confocal data, their

PSF model was less critical to a good fit of the structure than it would have been under a

standard transmitted-light microscope, such as the one imaging our data.

Depending on the immersion medium and microscope, a PSF can be measured and

estimated by imaging a tiny bead of material, such as oil or latex. The resulting measure-

ments can subsequently be used to deconvolve images formed by the microscope (Shaw

and Rawlins, 1991). However, performing the measurements can be a very time consum-

ing and tedious process and the results are microscope dependent.

Efforts have been made to learn the structure of a PSF without direct measurement

for the sole purpose of image restoration (Holmes, 1989, 1992; Conchello et al., 1994;

Conchello, 1998; Markham and Conchello, 2001; Carasso, 2001; Preza and Conchello,

2004). Results of this work have been somewhat successful. However, the images were

often captured under a confocal microscope. It has not been shown that these methods

can effectively deconvolve images from a brightfield transmitted-light microscope. Fur-
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thermore, eliminating blur in the images prior to analysis is a loss of information. By

modeling this blur and understanding it, we can get more accurate fits of our structure

model to data.

2.3 Structure and imaging models

Our generative model for the 3-D microscopic image data comprises a model for Al-

ternaria spores, the PSF of the imaging system, and the background light intensity of the

brightfield microscope. Although the spores are linked together in a contiguous shape, we

model them as independent sub-structures to, at least initially, simplify the problem and

develop our general approach. What follows is a description of our structure and imaging

models.

2.3.1 Spore structure

From Figure 2.1 we observe that Alternaria spores are fairly elliptical in shape and darkly

pigmented. Since we have a three-dimensional stack of images and are interested in

modeling the structure of Alternaria in 3-D, we represent them as ellipsoids with varying

levels of opacity. Thus, the i-th spore in the structure model has parameters for position,

size, rotation, and opacity

si = (po, a, b, c, ϕ, ϑ, ψ, λ) . (2.1)

The position po gives the center of the spore ellipsoid in a 3-D imaging windowW . The

size of the spore is specified by a, b, c ∈ R3+, which are the semi-axis lengths in the

representative ellipsoid. The orientation parameters ϕ, ϑ, ψ are Euler rotation angles that

all range over [0, π], due to symmetry in the ellipsoid. Finally, λ ∈ [0, 1] represents the

average opacity of a spore rendered as a filled ellipsoid in the image data.

As we describe our model for Alternaria spores and microscope imaging system, we

define a parameter space over which we will infer the model from data. We let uppercase

symbols represent parameter spaces and lowercase symbols represent elements of that

space. Denote the first part of the space containing all parameterizations of the i-th spore
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as Si, and let the space for n spores be Ψ(n) = S1 × · · · × Sn. Then an ordered set of n

spores, ψ(n) ∈ Ψ(n), is given by

ψ(n) = (s1, · · · , sn) . (2.2)

2.3.2 Imaging system

The images formed under a brightfield microscope exhibit a substantial amount of blur,

as can be seen in Figure 2.1. This is due to the shallow depth of field caused by the

high magnification of the optical system. In order to perform a good fit of a model and

localize the structure of Alternaria in the microscopic image data, it is important for the

PSF model to accommodate this blurring effect.

The image formation process in a microscope is a convolution of the clear, unobserved

3-D image with the point spread function, or impulse response, of the imaging system.

The PSF is the 3-D response h(x, y, z) of a point source of light in the system. Using

constraints from previous empirical observations (Shaw and Rawlins, 1991), we introduce

a model for the PSF of a transmitted light microscope.

Let h̃(·) be a model that approximates the actual PSF in the imaging system. The

x, y-plane in the space containing the model is defined to be parallel to the focal plane

and the z-axis aligned with the optical axis of the microscope. The function is defined as

a sequence of weighted 2-D Gaussians, each parallel to the x, y-plane and centered on the

z-axis. Thus it is symmetric about the x, y-plane and around the z-axis.

Formally, we define h̃(·) as a mixed function of stacked Gaussians ranging over x, y ∈
R2 and weighted along z ∈ Z,

h̃(x, y, z) =
α|z|√

2 π (β |z|+ γ2)
exp

[
− (x2 + y2)

2 (β |z|+ γ2)

]
. (2.3)

The parameter γ gives the base variance for all the Gaussians, and β scales their distance

from the x, y-plane. Thus, each Gaussian in h̃(·) has a variance that is linear with respect

to its distance from the x, y-plane. The base α is for the geometric distribution used to

weight the Gaussians.
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An informal and approximate visual description of the PSF geometry in (2.3) is that

of two blurry, conical volumes placed apex-to-apex at the origin of the x, y-plane. The

values within the cones are weighted 2-D Gaussians parallel to the x, y-plane. Figure 2.2

shows an illustration of this description.

It is possible to define h̃(·) completely over R3 instead of letting z be an integer. In this

case we could use the continuous exponential distribution over z for the weighting func-

tion. But as a practical matter, the point spread function in our model is convolved with

a discrete set of images, so ranging z over Z in our representation is justified. Moreover,

since the images themselves are composed of discrete pixels, x and y must be quantized

as well.

Alternaria in the 3-D image data occupy a relatively small region of the imaging

window. Hence, many pixels in the data are saturated with the intensity of light used by

the brightfield microscope. We define the background intensity of the imaging system

over the range [0, 1] and denote it as υ.

We continue building the space over our model parameters by denoting the space of

PSF parameters and background intensities with Φ. We further let a parameterization of

an imaging model in this space be given by

φ = (α, β, γ, υ) . (2.4)

2.3.3 Generative image model

Let θ(n) = (φ, ψ(n)) be an instance of the parameter space Φ×Ψ(n) defined over multi-

spore and imaging system models. Then the space of potential solutions spanning all

model configurations is

Ω =
⋃
n>0

n×Φ×Ψ(n) . (2.5)

For any (n,θ(n)) ∈ Ω, we generate a model-scene image stack Iθ(i, j, k) by intersect-

ing the ellipsoids in the structure model with a set of equally spaced and parallel (z = 0)
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Figure 2.2: Diagram of the PSF model h̃(x, y, z). The x, y-plane represents the focal
plane of the microscope, and the z-axis is aligned with the optical axis. The 2-D Gaussians
are stacked along the z-axis away from the focal plane in both directions, with linearly
increasing variance and geometrically decreasing weight. A Gaussian at distance zk from
the focal plane is illustrated.

planes. This stack of images approximates the optical sectioning of the image data cap-

tured at stepped focal lengths under the microscope. The distance between image planes

along the z-axis in Iθ(·) is fixed and provided by the microscope operator. The model-

scene is then a hypothesis of the unobserved 3-D image data; it is what might have been

observed through the microscope if the blurring effects were not apparent. The pixels

comprising the model-scene are defined by the background and spore intensity parame-

ters. Background pixels of Iθ(·) have the highest saturation with value υ. Pixels inside a

plane intersected ellipsoid belonging to a spore with opacity λ have the value υ (1 − λ).

Figures 2.4 and 2.5 show an illustration of the optical sectioning and rendering process of

the model-scene.

Conditioned on a given model-scene Iθ(·) and imaging system h̃, pixel intensities

in the 3-D image data I(·) are generated from independent Gaussians. The means and

variances of these Gaussians are derived from the PSF blurred model-scene. More for-
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mally, the means used to generate the independent and Gaussian distributed pixel data are

defined with the convolution

µIθ(i, j, k) =
W∑

u,v,w

Iθ(u, v, w) ĥ(i− u, j − v, k − w) (2.6)

where ĥ(·) is the quantized PSF model in (2.3). We compute the pixel variance parameters

from the means as

σ2
Iθ(i, j, k) = c1 |µIθ(i, j, k)− υ |+ c2 |µIθ(i, j, k)− 1 | , (2.7)

In addition to showing the optical sectioning of the model-scene, Figures 2.4 and 2.5

also display the generative process of our data with blur from the convolved point spread

function.

From equation (2.6) the mean value of the i, j, k-th pixel in I(·) can be viewed as

a weighted average of the model-scene with the PSF centered at i, j, k. The constants

c1 and c2 in (2.7) scale the variance in a linear combination of spore opacity and pixel

intensity. In the first term we observe that the pigment of a spore is not uniform across its

occupying pixels, and that spores with greater opacity tend to have higher variability. The

second term in the variance (2.7) approximates pixel intensity variations due to Poisson

noise in the imaging system; the lower the pixel intensity, the higher the likelihood of

noisy photon acquisition. The scaling constants are set to values obtained by preliminary

image analysis.

2.4 Bayesian statistical inference

Given a stack of Alternaria image data I(i, j, k) in the 3-D windowW , we want to find

the model
(
n,θ(n)

)
∈ Ω that best fits the data. We formulate this as a Bayesian statistical

inference problem by defining a probability distribution over the model parameter space

given the image data and find a maximum. Specifically, we define a posterior

p
(
n,θ(n) | I

)
= kp L

(
I | n,θ(n)

)
π
(
n,θ(n)

)
, (2.8)
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where kp is a normalization constant, L(· | ·) is the likelihood of the image data, and π(·)
is the model prior.

Conditioned on our model, the independence assumption among pixels in the image

data results in a product of Gaussians for the likelihood function. Using the image model

means (2.6) and variances (2.7), the likelihood is defined as

L
(
I | n,θ(n)

)
=

1√
2π σIθ

W∏
i,j,k

exp

{
− [I(i, j, k)− µIθ(i, j, k)]2

2σ2
Iθ

}
. (2.9)

2.4.1 Spore and imaging priors

The prior over the parameter space Ω assumes independence between the spore structures

and imaging system,

π
(
n,θ(n)

)
= πΦ(φ) πΨ

(
n,ψ(n)

)
. (2.10)

The parameters in the imaging system priors over φ are represented as independent and

Gaussian distributed. The hyperparameter values for these priors are chosen to have a

large variance and to be fairly uninformative. For the prior over spore structure, we ob-

serve that spores in Alternaria generally have the same shape, opacity and count, but their

position and orientation is quite varied. We integrate this information into the spore model

prior as follows.

The position of a spore is set to range uniformly over the windowW that has volume

VW . The rotation angles are modeled as independent and uniformly distributed on [0, π].

Since the spore sizes tend to be roughly the same, with a major axis and two minor axes of

similar length, we define independent Gaussians over them with means µa for the major

axis and µbc for the two minor axes. Lastly, we model spore opacity with a truncated

Gaussian over (0, 1]. Thus, the density function for a spore si is

f(si) = fx,y,z(si) fa,b,c(si) fϕ,ϑ,ψ(si) fλ(si) . (2.11)

Each of the subdensity functions over position, size, orientation, and opacity is defined
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by

fx,y,z(si) =
1

VW
(2.12)

fa,b,c(si) =
σ−1
a σ−2

bc

(2 π)3/2
exp

[
−(ai − µa)2

2σ2
a

− (bi − µbc)2 + (ci − µbc)2

2σ2
bc

]
(2.13)

fϕ,ϑ,ψ(si) =
1

π3
(2.14)

fλ(si) =
σ−1
λ√
2π

exp

[
−(λi − µλ)

2σ2
λ

]
. (2.15)

The existence of a spore in the imaging windowW follows a Poisson process, so we

define n to be Poisson distributed with intensity ν, which is the number of spores we

expect to observe. For this work, the value of ν was set to 10. Finally, we restrict the

interaction between spores so they do not intersect. The spore model prior is then

πΨ

(
n,ψ(n)

)
= knπ

νn e−ν

n!

n∏
i=1

χ(si 0 sj 6=i) f(si) , (2.16)

where knπ is a normalization constant for the truncated subdensity functions, 0 denotes

no geometric intersection, and χ(·) is the characteristic function giving 1 for true and 0

otherwise.

2.5 Sampling

Inferring the most likely model given Alternaria image data is a challenging task. The

posterior (2.8) is a complex distribution virtually impossible to evaluate analytically or

numerically. Thus, we employ Markov chain Monte Carlo (MCMC) sampling to explore

the model solution space in search of a maximum under the posterior (Sokal, 1989; Neal,

1993; Andrieu et al., 2001; Liu, 2001; Bishop, 2006).

The sampler iteratively generates random, unbiased model samples from the solution

space Ω. It consists of a set of moves, or Markov chain, that create new model proposals

by proposing changes to parameters in a previous sample. The sampler moves fall into
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one of two categories: (1) changes to a spore, the PSF, or the background; and (2) changes

to the number of spores in the model. The latter are referred to as diffusion moves and the

former jump moves.

At each iteration of the sampler, the m-th move is selected for execution with proba-

bility r(m) and a new model (n, θ̃(n)) is proposed. In this chapter, a uniform distribution

was used for r(·). Depending on how likely the new model is under the posterior and

to have been proposed, it is accepted or rejected. This is the Metropolis-Hastings (MH)

algorithm for MCMC (Metropolis et al., 1953; Hastings, 1970), and it is used for both dif-

fusion and jump moves. The latter are reversible-jump MCMC moves from Green (1995,

2003).

2.5.1 Diffusion moves

The diffusion moves for modifying parameters in a spore and proposing a new one are

shift, size, rotate, and opacity modification, as well as moves to update the PSF and back-

ground parameters. We define the proposal distributions for diffusion moves by modify-

ing the prior in (2.10). For parameters updated in a move, we replace their subdensity in

the prior with a Gaussian that has means equal to corresponding parameters in the pre-

viously accepted model. The unchanged parameters have essentially a delta function as

their density.

For example, the proposal distribution for randomly selecting the j-th spore in a model

θ(n) and shifting its position is given by

qshift

(
θ̃(n) | θ(n)

)
=
knshift

n

[
n∏
i 6=j

χ(si 0 s̃j)

]

×
σ−3
x,y,z

(2 π)3/2
exp

[
−(x̃j − xj)2 + (ỹj − yj)2 + (z̃j − zj)2

2σ2
x,y,z

]
, (2.17)

where σ2
x,y,z is a small variance and knshift is a normalization constant that is not necessary

to compute, as we will see. Similarly, the proposal for changing spore opacity is
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qopac

(
θ̃(n) | θ(n)

)
=
knopac

n

σ−1
λ√
2 π

exp

[
−(λ̃j − λj)2

2σ2
λ

]
. (2.18)

Since a change in spore opacity does not modify its geometry, the intersection test

χ(si 0 s̃j) is excluded. The proposal distributions for other diffusion moves are simi-

larly constructed.

Under the Metropolis-Hastings algorithm for MCMC sampling, we combine the target

distribution with the proposal distribution in a ratio to define an acceptance probability.

In our case the target distribution is the posterior (2.8). For the m-th diffusion move in the

algorithm, the rate of acceptance is

αm

(
n, θ̃(n)

)
= min

{
1,
p(n, θ̃(n) | I) qm(θ(n) | θ̃(n))

p(n,θ(n) | I) qm(θ̃(n) | θ(n))

}
. (2.19)

The definition is derived to maintain a detailed balance condition in the Markov chain,

which is a sufficient condition for convergence to the posterior (Sokal, 1989; Neal, 1993).

Intuitively, the algorithm constructs a Markov chain that explores the state space in

a manner that is representative of the target distribution defined over it. This is accom-

plished by ensuring that the probability of being in state θ and transitioning to θ̃ is equiv-

alent to being in state θ̃ and transitioning back to θ, i.e.,

p(n, θ̃(n) | I) T (n)(θ̃ | θ) = p(n, θ̃(n) | I) T (n)(θ | θ̃) (2.20)

In the case of the Metropolis-Hastings algorithm, the transition probability is

T (n)(θ̃ | θ) = qm(θ̃(n) | θ(n)) αm(n, θ̃(n)). Appendix A provides a detailed description

of MCMC sampling, including the detailed balance condition, the Metropolis-Hastings

algorithm, and the convergence of a Markov chain to a target distribution.

By expansion of the defined posterior and proposal distributions, many of the terms

in (2.19) cancel. This includes the difficult to compute normalization constants, much of

the prior, and the Gaussian proposal distributions. As an example, for a shift move of

the j-th spore, we apply the proposal distribution in (2.17) and construct the simplified
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acceptance probability

αshift

(
n, θ̃(n)

)
= min

{
1,
L(I | n, θ̃(n))

L(I | n,θ(n))

n∏
i 6=j

χ(si 0 s̃j)

}
. (2.21)

In this case, the prior and most of the proposal distribution cancel. This is due to the spore

position prior (2.12) being a uniform distribution and the Gaussian proposal in (2.17)

having symmetric means. The intersection test is necessary because the geometry of the j-

th spore is altered and could have created an overlap with another spore. Since the rotation

angles of a spore also have a uniform prior (2.14), the acceptance probability for the

rotation move has exactly the same construction as the shift move. The size parameters,

however, have a Gaussian prior (2.13), requiring an extra factor in their acceptance

αsize

(
n, θ̃(n)

)
= min

{
1,
L(I | n, θ̃(n)) fa,b,c(s̃j)

L(I | n,θ(n)) fa,b,c(sj)

n∏
i 6=j

χ(si 0 s̃j)

}
. (2.22)

The spore opacity parameter is similarly Gaussian distributed in its prior (2.15), but it

does not modify spore geometry; so the intersection test is excluded from its acceptance

αopac

(
n, θ̃(n)

)
= min

{
1,
L(I | n, θ̃(n)) fλ(s̃j)

L(I | n,θ(n)) fλ(sj)

}
. (2.23)

The acceptance probabilities for moves manipulating the imaging system parameters φ

are all similar to (2.23), since they are Gaussian distributed and independent of the Al-

ternaria structure. For this reason we omit their definitions.

2.5.2 Jump moves

The jump moves in the sampler are birth and death of a spore. In both moves, the dimen-

sionality of the model n is modified as a spore is added to or removed from the model.

For a birth move, the proposal distribution for a new spore s̃ is defined as the normalized

spore density (2.11) in the model prior
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qbirth(s̃) = kbirth f(s̃). (2.24)

During a death move, a spore is randomly selected for deletion, so a proposal distribution

is not needed.

In order to use the MH sampling algorithm for jump moves, we redefine the accep-

tance probability (2.19) to properly handle trans-dimensional moves between parame-

ter subspaces. To do this, we follow the reversible-jump MCMC formulation (Green,

1995, 2003) and match parameter dimensions using the proposal distribution (2.24) and a

change of variable scaling factor to switch between density functions. For the birth move,

the acceptance probability becomes

αbirth

(
n+1, θ̃(n+1)

)
= min

{
1,
p(n+1, θ̃(n+1) | I)

p(n,θ(n) | I)

r(death)

r(birth)

× 1

qbirth(s̃)

∣∣∣∣∣ ∂(θ̃(n+1))

∂(θ(n), s̃)

∣∣∣∣∣
}
. (2.25)

Unlike diffusion moves, the determinant of the Jacobian matrix is necessary in jump

moves because we are transitioning between density functions; a unit parallelepiped may

have a different density in p(n)(·) qbirth(s̃) than in p(n+1)(·), depending on how the vari-

ables are mapped. The determinant gives the proper scaling constant for making this

change of variable (Green, 1995).

In our independent spore model, we match dimensions in a birth move by mapping

the proposed spore to a new position in the parameter vector. For example, the size, shape

and rotation of the proposed spore s̃ is directly assigned as the spore sn+1 in the model

θ(n+1). More formally, we define a mapping that matches dimensions between parameter

subspaces,

G : Φ×Ψ(n+1) → Φ×Ψ(n+1) , (2.26)

by assigning a parameter vector containing n spores and a proposal s̃ to another parameter
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vector containing n+ 1 spores, i.e.

G(θ(n), s̃) = θ̃(n+1) . (2.27)

The mapping is defined in more detail by indexed component functions that assign input

parameters to their indexed subsets

Gφ : Φ×Ψ(n+1) → Φ (2.28)

G1 : Φ×Ψ(n+1) → Ψ (2.29)
...

Gn+1 : Φ×Ψ(n+1) → Ψ . (2.30)

In our case, each of these functions simply returns its indexed set of parameters, for

exampleGφ(θ(n), s̃) = φ andGi(θ
(n), s̃) = si. The determinant of the Jacobian in (2.25)

then becomes

∣∣∣∣ ∂ G(θ(n), s̃)

∂ (θ(n), s̃)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

∂Gφ
∂φ

∂Gφ
∂s1

· · · ∂Gφ
∂sn+1

∂G1

∂φ
∂G1

∂s1
· · · ∂G1

∂sn+1

...
... . . . ...

∂Gn+1

∂φ
∂Gn+1

∂s1
· · · ∂Gn+1

∂sn+1

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0

0 1 · · · 0
...

... . . . ...

0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
. (2.31)

Thus, the change in dimensionality is a one-to-one mapping (θ(n), s̃) → θ̃(n+1), and the

determinant of the Jacobian is 1. If we had chosen instead a non-identity mapping of

parameter subsets, the resulting determinant of partial derivatives would not necessarily

be 1; rather, it would be a function of our parameters. For example, a mapping could be

defined that assigns half of the proposed ellipsoid size to split a spore. For non-linear

mappings, this function can be involved and exacting to derive. In our case, we have

found that the identity mapping yields acceptable proposals.

As we observed in the case of diffusion moves, many of the terms in the acceptance
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probability (2.25) cancel, such as those of the prior. This also includes the proposal prob-

ability (2.24), since it is equivalent to the spore density (2.11); the normalization constant

kbirth additionally cancels with a factor of the prior constant kn+1
π . The acceptance proba-

bility for a birth move finally reduces to

αbirth

(
n+1, θ̃(n+1)

)
= min

{
1,

ν

n+1

L(I | n+1, θ̃(n+1))

L(I | n,θ(n))

× r(death)

r(birth)

n∏
i=1

χ(si 0 s̃)

}
. (2.32)

A test for intersection remains to guard against adding a new spore that overlaps with any

others already in the model.

The spore death move complements the birth move by randomly selecting a spore and

removing it from the model. The acceptance probability for a death move is the inverse

of (2.32), but with the intersection test removed

αdeath

(
n−1, θ̃(n−1)

)
= min

{
1,
n

ν

L(I | n−1, θ̃(n−1))

L(I | n,θ(n))

r(birth)

r(death)

}
. (2.33)

As with the diffusion moves, the jump move acceptance probabilities maintain the de-

tailed balance condition (Green, 1995). Thus, the posterior will be the stationary distri-

bution of the trans-dimensional Markov chain followed by the sampler.

2.6 Data-driven sampling

Unfortunately, the MCMC sampler described here suffers from a common problem many

other samplers share—the amount of time required for burn-in, the sampler converge

rate, is excessively long. In our case, this is primarily due to the uniform prior over

spore position and orientation; birth proposals at uniformly random locations in the image

window have a high rejection rate. This causes an increase in the number of iterations
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required for the sampler to converge. In short, it takes the sampler a large number of

iterations to generate highly likely sets of spores given some Alternaria image data. We

ameliorate this problem by improving the birth proposals with preliminary data analysis

to construct a more informative proposal distribution, so called data-driven MCMC (Tu

et al., 2005, 2002; Zhu et al., 2000).

The basic idea of DD-MCMC is to apply some preliminary image analysis to the input

data and construct more informative proposals for the sampler. For instance, if the goal is

to fit circles in an image using an MCMC sampler, a good series of proposals is created

by first doing edge detection on the images, then applying Hough voting to build a density

function over possible circles in the image. The votes in the Hough accumulator are then

adapted as a proposal distribution over circles for the sampler. This is similar to our

situation except that, instead of searching for circles in individual images, 3-D ellipsoids

are detected in a stack of Alternaria image data.

The current birth proposal (2.24) is based on the relatively uninformative prior distri-

bution over spores. In general, random sampling from the prior makes for a reasonable

proposal during birth moves. The uniform nature of our prior over spore position and

orientation, however, may require a large number of proposals to generate an acceptable

spore. The effect of this is that the sampler consumes most of its time rejecting poor

proposals for birth and death of spores; that is, the rejection rate for jump moves is much

higher than for diffusion moves. Thus, improving the proposal acceptance rate of the

jump moves will speed up the convergence of the algorithm.

Our replacement proposal distribution for birth moves is generated directly from the

Alternaria image data. We apply surface point detection and a Hough transform for ellip-

soids to the data. This gives us a coarse estimate of parameterized spores in the data. The

estimates are subsequently collected into a Hough vote accumulator for ellipsoids, which

is normalized and used as the proposal distribution for birth moves. Exact detections of

spores in the data are not necessary because the diffusion moves of the sampler will per-

fect the fit of the newly birthed ellipsoids; they only need to be rough approximations

that on average increase the model posterior probability. What follows is a description of

the surface point detector used to detect the estimates of spores in the data and how we



51

combine those estimates into a probability distribution over spores.

2.6.1 Surface point detector

The surface detector is similar to the standard two-dimensional Canny edge detection

algorithm (Canny, 1986) but extended to three-dimensions. We use the gradient of a 3-D

Gaussian for convolution with the image data. The result of this convolution is set of

3-D gradient vectors indexed by pixel position, comprising a gradient map. Following the

approach outlined for edge detection in Forsyth and Ponce (2002), we apply non-maximal

suppression and hysteresis to the 3-D gradient map and obtain estimated surface points.

Using a derivative of Gaussian convolution filter results in thick edges when applying

a threshold to gradient magnitudes. The idea of non-maximal suppression is to replace

several nearby edge point detections along a thick edge with one that has the largest

gradient magnitude. We identify these points by tracing paths through the gradient map.

When a locally maximum magnitude is achieved in a particular direction, its location is

identified as an edge point if the magnitude exceeds a threshold.

Once non-maximal detections are removed, we again trace the gradient map, but this

time in direction perpendicular to the gradient in order to follow edge contours. The trac-

ing is initiated at the local maximum edge points found in the previous step. The contours

are followed until the gradient drops below another, lower threshold. This strategy is

often referred to as hysteresis.

As an added feature of our surface point detection algorithm, we can approximate

the surface of Alternaria in the images for visualization. While it may not be as crisp

as a visualization generated from our geometric model, it is still instructive. The surface

reconstruction is accomplished as follows: for each surface point, define a small surface

patch, e.g., a polygon, at the position of the detected surface point and orient the patch

with a normal vector given by the gradient of the surface point. Examples of reconstructed

Alternaria surfaces are given in Figure 2.3.

A good surface reconstruction could be used to estimate ellipsoids instead of relying

on sparsely detected points. Our approach for reconstruction, however, is too naive to

produce anything beyond a simple visualization; the reconstruction comprises a set of
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oriented surface patches, whose size and shape are independently constructed. Further,

we ignore local cues about surface point density and local curvature, both potentially

useful for improving a reconstruction. In Appendix B we discuss other more advanced

techniques for surface reconstruction. There we also address ideas for utilizing recon-

structed surfaces in our data-driven ellipsoid detector and as a replacement for the blurry

microscope images.

2.6.2 Ellipsoid estimator

A Hough transform is used to find ellipsoids from the detected surface points. Due to the

relatively high dimensionality of an ellipsoid, we use a very coarse quantization for the

Hough transform. We further simplify computation and reduce the number of parameters

defining a spore by assuming equal minor axes in an ellipsoid. Although this results in

imprecise estimates of spores in the data, it reduces the size and complexity of the Hough

transform. Furthermore, coarse estimates are tolerable in our application because sampler

diffusion moves will perfect the fit of proposed spores.

We construct the Hough transform in the standard way. For each detected surface

point, we iterate over the quantized spores at each surface point and increment a counter

in the Hough accumulator H. In this way, the accumulator defines a discrete density

function indexed by quantized parameterizations of ellipsoids. We utilize this density as a

proposal distribution in the sampler birth move. The improved data-driven birth proposal

is then redefined as

qbirth(s̃) = kbirth fH(s̃ | s̄)H(s̄) , (2.34)

where s̄ is the spore in the Hough accumulator that acts as the mean value for s̃. The

density function fH(·) is then similar to the prior (2.24), except that all parameters are

Gaussian with means given by s̄. Finally, the counts in the accumulator are included in

the normalization constant kbirth. In practice, however, this constant does not need to be

computed as it will cancel in the Metropolis-Hastings acceptance step.

We generate a spore from the data-driven proposal by first sampling an ellipsoid from
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(a) A1 surface points

(b) A2 surface points

Figure 2.3: Rendering of detected surface points in the Alternaria data sets A1 (2.1a-b)
and A2 (2.1c-d). The rendering was created by drawing polygons at each surface point
with normals given by the gradient direction from the detection algorithm in Section 2.6.1.
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the Hough accumulator, then conditionally generating a random sample from the Gaus-

sian spore density. Sampling from the conditional Gaussian density is straightforward. To

generate samples from the Hough accumulator, we use rejection sampling (Bishop, 2006;

Andrieu et al., 2001). Specifically, we denote the number of bins in the accumulator with

|H| and let its maximum be

Hmax = max {H(si)}|H|i=1 . (2.35)

Then samples can be generated from the Hough accumulator with uniform distributions

over integers as follows:

1. Sample u ∼ U(0, Hmax)

2. Sample i ∼ U(1, |H|)

3. IfH(si) ≥ u, propose si; otherwise repeat.

Although the data-driven birth proposal is an improvement, it is still possible some

spores were not properly estimated in the Hough voting process due to accumulator quan-

tization and image blur1. Thus we also include the previously defined uniform birth

move (2.24) in the reversible-jump sampler to allow for proposing the missed detections.

2.7 Results

We evaluated the effectiveness of the model sampler on Alternaria image sets A1 and

A2. In addition, we tested the sampler on synthetic spore data to obtain a comparative

measure for its performance on ideal data.

2.7.1 Synthetic Data Evaluation

The synthetic data were randomly generated from our model of the imaging system and

spores. We created ten data sets S1, . . . ,S10 and optically sectioned them into 80 im-

1The data-driven Hough voting for ellipsoids is a preprocessing step, so it does not utilize information
from our PSF model.
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ages of size 300×300 pixels. Each set contained 10 randomly generated spores. Three-

dimensional visualizations of two data sets S1 and S2 are given in Figures 2.4a and 2.5a.

The image sets were blurred with a parameterization of the PSF model in (2.3); random

Poisson noise was added as well. Examples from both sets are given in Figures 2.4b-c

and 2.5b-c.

We speed up the inference time required for a good fit by running the sampler on

multiple resolutions of the image data. The time required for computing our likelihood

function (2.9) depends on the number of pixels in the data, so decreasing the resolution

in the image stack can directly speed up the likelihood computation. Although the lower

resolution images have less information to fit structure to, they quickly yield a rough fit

that can be used as initialization for a sampler running at higher resolution, which further

fine-tunes the inferred model.

The MCMC sampler was run for 3000 iterations at a resolution of 20%, followed by

1000 iterations at 50%. This process was repeated four times on all the data sets using

a different random seed each time. On average we correctly fit 8 spores to the data sets.

The results for each set are shown in Figure 2.6.

Difficulties in detection arose when two or more spores in the data were nearly parallel

in their major axes and very close together, in which case one model spore was sometimes

fit to both. Occasionally, multiple model spores were fit to a single spore in the data. In

a few cases, no proposal was accepted for a few spores in the data. We observed that

this happened when the ellipsoid in the data was relatively long and skinny, yielding little

evidence in the image data. Further, due to not occupying many pixels in the image data,

the Hough accumulator for these spores had fewer votes, so we expect proposal would

require more iterations by either the data-driven and prior-based birth moves.

2.7.2 Sampler convergence rate

The analysis of convergence rate for the sampler was done on both synthetic data sets.

For each data set, the sampler was run 4 times, with a different random seed each time. A

good measure of the convergence rate of the sampler is the iterative log likelihood (2.9)

of the image data given the model, which is what we show here.
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(a) 3-D visualization

(b) 34 of 80 (c) 42 of 80

Figure 2.4: Images from synthetic spore data set S1. The 3-D visualization viewpoint
in (a) is directed towards the origin and parallel to the z-axis. The images in (b) and (c)
show the optically sectioned ellipsoids at two focal planes perpendicular to the z-axis and
convolved with a sampled parameterization of the PSF.
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(a) 3-D visualization

(b) 20 of 80 (c) 30 of 80

Figure 2.5: Images from synthetic spore data set S2. The 3-D visualization viewpoint
in (a) is directed towards the origin and parallel to the z-axis. The images in (b) and (c)
show the optically sectioned ellipsoids at two focal planes perpendicular to the z-axis and
convolved with a sampled parameterization of the PSF.
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Figure 2.6: Mean number of spores correctly fit to the synthetic data sets, standard de-
viation bars are shown. Each synthetic set contained 10 spores and was run with four
different random seeds.

The image data in the likelihood is modeled as pixel based, so computation of the

log likelihood at each iteration of the sampler can require a significant amount of time.

To ameliorate this effect, the sampler is run on a hierarchy of down-sampled image data.

For example, the synthetic data is initially down-sampled to a resolution of 20% (5 pixels

averaged into 1) and run for a number of iterations. Following this, the synthetic data is

again down-sampled, but to a higher resolution and run for further iterations. As previ-

ously mentioned, the effect of this resolution hierarchy is that run-time performance of

the sampler is improved by getting a rough fit for the model at a low resolution, then

increasing the resolution to allow the sampler to fine-tune its fit.

To test the effects of the data-driven birth proposal on convergence, we ran the sampler

for 4K iterations at 20% resolution followed by 3K iterations at 25% for both the prior-

based and data-driven proposals. As predicted, adding a data-driven proposal to the birth

move improves the convergence rate of the sampler dramatically; the number of iterations

required by the sampler to achieve a high likelihood is quantitatively much less when

using the data-driven proposal. This can be seen in the log likelihood plots of Figures 2.7

and 2.8. Notice that when the resolution is increased, the log likelihood is increased by

a constant factor. A qualitative improvement in the convergence rate of the sampler to a
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(d) 25% resolution; data-driven proposal

Figure 2.7: Log likelihood plots for synthetic spore data set S1 (Figure 2.4) comparing the
prior-based proposal against data-driven. Plots (a) and (c) used the model prior for birth
proposals with the resolution increasing from 20% after 4000 iterations to 25%. Plots (b)
and (d) used data-driven birth proposals with a similar resolution increase from 20% to
25%. When the resolution is increased, the log likelihood is scaled by a constant.
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Figure 2.8: Log likelihood plots for synthetic spore data set S2 (Figure 2.5) comparing the
prior-based proposal against data-driven. Plots (a) and (c) used the model prior for birth
proposals with the resolution increasing from 20% after 4000 iterations to 25%. Plots (b)
and (d) used data-driven birth proposals with a similar resolution increase from 20% to
25%. When the resolution is increased, the log likelihood is scaled by a constant.
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(a) Prior-based proposal

(b) Data-driven proposal

Figure 2.9: Qualitative comparison of samples from synthetic spore data set S1 after
8400 iterations using the prior-based birth proposal (a) and the data-driven proposal (b).
The green wire-frame spores are the synthetic data and the gray solids are the estimates.
Notice that the prior-based proposals missed many of the spores.
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(a) Prior-based proposal

(b) Data-driven proposal

Figure 2.10: Qualitative comparison of samples from synthetic spore data set S2 after
8400 iterations using the prior-based birth proposal (a) and the data-driven proposal (b).
The green wire-frame spores are the synthetic data and the gray solids are the estimates.
Notice that the prior-based proposals missed many of the spores.
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α β γ

mean stdev mean stdev mean stdev
A1 0.93 0.001 0.82 0.44 1.31 0.30
A2 0.93 0.030 1.06 0.14 1.35 0.33

Table 2.1: Mean PSF model parameters inferred from the Alternaria data from four ran-
dom starting states. As expected, the fit parameters are similar for the data sets, which
were imaged under the same microscope.

good model can be seen in Figures 2.9 and 2.10.

2.7.3 Alternaria evaluation

Two sets of Alternaria image stacks were evaluated: A1 comprising 102 images of size

800×800 pixels andA2 with 80 images of size 700×700. Images of these sets can be seen

in Figure 2.1. The number of spores in the data sets were manually counted and found to

be 17 and 21, for A1 and A2 respectively.

We ran the sampler on both Alternaria data sets for 500 iterations at a resolution of

20%. As with the synthetic evaluation, four instances of the sampler were run on the

data sets, each time with a different random seed. Figure 2.11 shows a 3-D rendering of

a fit model for each data set next to the detected Alternaria surface used for generating

data-driven birth proposals.

In A1 the average number of spores detected was 6 (35.2%), and 8.75 (41.7%) for

A2. While we did not achieve 80% accuracy, as in the synthetic case, the results are still

noteworthy considering the amount of non-spore structure and substantial blur in the data.

The average inferred background intensity for A1 and A2 was 0.78 and 0.75 with a

negligible standard deviation. Table 2.1 gives the inferred PSF model parameters for the

data sets. The standard deviation is relatively high for PSF parameters β and γ. This is

most likely due to the sampler adding variance to the PSF in order to accommodate the

large quantity of non-spore structure in the images.

We tested the effect of using our model of the PSF for fitting spores versus using a

3-D Gaussian and a delta function. In the case of the Gaussian, a σ of 0.6 was chosen for
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Model PSF Gaussian PSF Delta PSF
mean stdev mean stdev mean stdev

A1 6.0 0.9 4.75 0.4 2.5 0.5
A2 8.75 0.8 7.25 2.9 6.25 2.2

Table 2.2: Mean number of spores correctly fit to Alternaria data using a delta function,
Gaussian, and our model as the PSF. Four random starting states were used for each data
set. It is clear that fitting our model of the PSF improves spore detection. Data set A1 has
17 spores and A2 has 21.

all dimensions by empirical analysis of the Alternaria image data. This is consistent with

work done previously to approximate the PSF (Al-Awadhi et al., 2004; Al-Awadhi, 2001;

Shaw and Rawlins, 1991).

Table 2.2 lists the average number of spores detected using each of the PSFs during

model inference. Figure 2.12 shows images in A1 compared to inferred model-scene

images that are convolved with each of the PSF types. These results combined show that

fitting our model of the PSF to the image data most closely resembles the imaging effects

of the microscope and enables a more accurate estimate of structure in the images.

2.8 Conclusion

Much biological structure is represented well by three-dimensional structure models, par-

ticularly for the purposes of quantitative analysis. We have shown how parts of biological

structure, such as spores, can be with modeled with geometric primitives, like ellipsoids,

and fit using statistical inference.

We developed a generative likelihood model for observed image data that combines

our structure and imaging models. Our approach to fitting is Bayesian statistical infer-

ence. We present a reversible-jump sampler for fitting independent ellipsoids and the

imaging model to a stack of microscope images simultaneously. Our results showed that

fitting structure in microscope images is improved by modeling the point spread func-

tion of the imaging system. We observe that the parameters of the imaging system are

fairly consistently fit, and that ellipsoids are successfully fit to synthetic data. We also
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demonstrate, through the use of data-driven MCMC that ellipsoids can be fit to spore

substructures in the images of Alternaria

In the next chapter, we extend this work to model the overall structure of Alternaria

with a grammar of its growth. We present an idea to fit substructures in the data, such

as spores and hyphae, under the constraint that their combined structure is an instance

of the grammar. One type of grammar that may be useful for this task is a stochastic

L-system (Lindenmayer, 1968, 1975), which is commonly used to generate realistic in-

stances of plants in computer graphics.
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(a) Surface of A1 (b) Spores in A1

(c) Surface of A2 (d) Spores in A2

Figure 2.11: Reconstructed surface of Alternaria in the image stacks and 3-D renderings
of corresponding inferred spore models. The surface detection algorithm for data-driven
birth proposals generated the views in (a) and (c). Perceived structure in these images is
known only to the viewer. Figures (b) and (d) represent detected spore structure.
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(a) 36 of 102 (b) Model PSF (c) Gaussian PSF (d) Delta PSF

(e) 48 of 102 (f) Model PSF (g) Gaussian PSF (h) Delta PSF

Figure 2.12: Illustration of the effects for three different PSFs used to detect spores. From
top to bottom, column (e) contains images 36 and 48 out of 102 from Alternaria data set
A1. The other columns are corresponding images from inferred model-scenes convolved
with the learned PSF model (f), a 3-D Gaussian (g), and a delta function (h). Notice that
the images in (f) most closely resemble the Alternaria data in (e), indicating that our PSF
model is substantively closer to the true PSF than a Gaussian and a delta function.
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CHAPTER 3

Inferring Grammar-based Models for Biological Structure

3.1 Introduction

The function of an object is often closely related to its structural form. As a result, the

process of understanding what a novel item is or does frequently begins with an inspection

of its structure. This is particularly true in biology, where scientific inquiries of micro-

scopic specimens focus on observing and quantifying structure in images under varying

experimental conditions to test hypotheses of specimen functionality. Manually obtain-

ing such results, however, is expensive and time-consuming. In Chapter 2 we presented

a method to automatically infer independent structural components of biological speci-

mens from microscopic images. In this chapter we build on that work by detailing a more

complete representation for biological structure that uses a grammar to describe patterns

of growth. We also present an algorithm to infer instances of the structure model from the

same microscopic images.

Many biological specimens comprise a set of connected substructures that are recur-

sively related and can be described by a formal set of rules explaining their growth. The

set of rules is a grammar for growth and is similar to Lindenmayer-systems (Lindenmayer,

1975) used in graphics. L-systems are related to context-free grammars. They consist of a

set of production rules containing terminal and non-terminal symbols that are recursively

substituted to produce a string of terminals. The terminal symbols in the rules represent

substructures of the plant, such as a unit stem, branching stem, or leaf. By stochastically

and recursively applying these rules, an instance of the grammar is generated. We con-

sider such a grammar as a basis for building a probabilistic specimen model to infer from

data. The model is constructed so that repeated application of the grammar rules can gen-

erate a parameterization of it. Thus, our approach focuses on fitting a complete model of

the specimen, unlike other methods that fit only individual and independent substructures
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of specimen (e.g., Chapter 2; Al-Awadhi et al., 2004).

Images formed under a transmitted-light microscope contain a significant amount of

blur due to the high magnification and shallow depth-of-field in the optics. This makes

accurate localization of structure in the images difficult. Rather than try to eliminate the

blur from the images through deblurring methods (Conchello, 1998; Holmes, 1992), we

follow the approach of Chapter 2 and model the optical system of the microscope. This

enables a fuller understanding of the image formation process and the ability to unlock

structural information captured in the image blur. Combining a grammar-based structure

model for a specimen with a model for the optics of the imaging system is an innovative

and powerful way to understand microscopic images accurately.

Inferring such models is analytically very difficult; the number of parameters, their

interdependence, and the fact that the dimensions of the model is itself a parameter, cre-

ate a space that is prohibitively complex to work with. Thus, we create a Markov chain

Monte Carlo sampler (Sokal, 1989; Neal, 1993; Andrieu et al., 2001; Liu, 2001; Bishop,

2006) to efficiently explore the parameter space in search of a likely set of parameters

that generated the data. The moves of the sampler that guide its search through the model

parameter space effectively embody the rules of the grammar for the specimen. Further-

more, the sampler infers both the structure and imaging models simultaneously so that

each can benefit from an improved fit of the other. Since the dimensionality of the model

is unknown, we further construct a reversible-jump MCMC (Green, 1995, 2003) sampler

to handle model selection and traverse the multi-dimensional parameter spaces.

A good example of a biological specimen whose structure is recursive in nature is Al-

ternaria, the microscopic genus of fungus introduced in Chapter 2. To aid in the analysis

of Alternaria and illustrate our ideas for structure modeling and inference, we devel-

oped a grammar-based model for Alternaria and sampling methods for inference. Fig-

ure 2.1 shows the self-similarity that exists within two examples of Alternaria in three-

dimensional microscopic image stacks. Our approach focuses on developing a set of

simple rules that can generate these self-similar structures and fitting instances of these

rules to 3-D stacks of images.

We are aware of only one previous instance that uses an L-system model during the
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process of biological structure recognition (Samal et al., 2002). However, the L-system

model was not directly used for the recognition task; rather, it generated synthetic plant

images for training a rule-based species classifier. The primary focus of the work was

feature detection and a classification task, where the features were obtained using standard

image analysis techniques on the images generated by the L-system model.

3.2 Stochastic grammar for structure

L-systems were first introduced as a mathematical abstraction for modeling cellular in-

teractions in plants (Lindenmayer, 1968). L-systems are a type of formal grammar

similar to context free grammars (Manning and Schutze, 1999) with the exception that

all production rules are applied in parallel and simultaneously replace all letters in a

word (Prusinkiewicz and Lindenmayer, 1990). A parametric stochastic context-free L-

system is defined by a set of symbols, production rules, and probabilities for rule applica-

tion. For example,

G = (V,Σ, R, r0, π) , (3.1)

where V is the set of non-terminal symbols that are replaced during production rule re-

writing, and Σ is the set of terminal symbols comprising the grammar alphabet. The

collection of production rules, denoted R, maps V → V ∪ Σ; the base production rule

r0 is an axiom consisting of terminal symbols only. The grammar becomes stochastic

by including a probability distribution π defined over production rules. The probability

distribution π characterizes how frequently each of the rules is applied, making sentence

production non-deterministic. Sentences are produced by randomly selecting a produc-

tion rule to apply and replacing each non-terminal symbol from V with combinations of

symbols from both the non-terminals and the alphabet V ∪ Σ. The axiom rule r0 is used

to complete sentences by replacing non-terminals with symbols from the alphabet only.

Recursively following this process for many iterations can generate complex, self-similar

structures (see Figure 3.1).

L-systems have been successfully used to visualize and simulate a wide range of
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plants and trees (Oppenheimer, 1986; Weber and Penn, 1995). This includes modeling

peach trees (Allen et al., 2005), Fraxinus pennsylvanica shoots (Hammel et al., 1995),

proteins (Escuela et al., 2005), and other herbaceous plants (Prusinkiewicz et al., 1988).

They have also been used to model and render entire plant ecosystems (Deussen et al.,

1998).

3.2.1 Alternaria L-system

The fungi of genus Alternaria grow similarly to plants. They have a long vegetative

hyphae, like a stem, with branches that have a three-dimensional, repeating pattern (Sim-

mons, 1999). Each branch begins as a hypha capable of producing reproductive spores,

known as a primary conidiophore development. A hypha cell in a branch can develop an-

other hypha cell or a spore through apical growth at its tip. When a spore develops, several

structures can occur depending on the species: another spore, a lateral intra-conidium hy-

pha branch coming from one cell of the spore, an apical conidium terminus hypha branch

coming from the tip, or a sub-conidium conidiophore hypha branch coming from the

hypha cell immediately before the spore.

In general, the fungus continually produces new hyphae cells and spores. These in

turn develop into more hyphae cells and spores in the manner previously described. The

overall structure is then defined by a recursive growth pattern with self-similar structure.

To model this growth process we use a parametric, stochastic, and context-free L-system.

In our grammar for Alternaria (Spriggs et al., 2007), the set of parameters and prob-

ability distributions are determined from morphological characteristics obtained by plant

pathologists observing the structure. What follows is a description of the rules and sym-

bols in the grammar. We represent how the long vegetative hyphae grows and develops

branches with the rule

Vhypha → H(πv, πh) B Vhypha . (3.2)

The non-terminal H(πv, πh) stochastically expands to a string of hyphae cells whose

count is distributed according to πv. The size and orientation of each cylinder shaped
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hypha is further drawn from the probability distribution πh. The orientation of each cell

is defined relative to its connecting structure by a rotation matrix with two angles ϕ, ϑ.

A branch off of the main vegetative hyphae is replaced by further developments of

Alternaria substructures, including a single chain of hyphae,

B → H(πv, πh) C1 . (3.3)

The symbol C1 is stochastically replaced with one of several conidiophore developments.

These include a sub-conidium hypha C3, followed by a spore; a single hypha cell h(πh);

or no change resulting in a pause in development. We write these rules as

C1 → C3 s(πs) C2 | h(πh) C1 | C1 , (3.4)

Each of the three possible developments is randomly chosen based on a discrete density

function defined by species-specific information from the mycologist. Since L-systems

simulate growth by applying rules simultaneously and in parallel, the no-change rule is

necessary to represent slower growth by part of the structure.

We complete the grammar for Alternaria with a pair of rules that describe branching

pattens near spores. Specifically, a spore is expanded by another spore, growth of an

apical or lateral branch, or switching to hypha development:

C2 → s(πs) C2 | Apical C1 | Lateral C1 | C2 , (3.5)

C3 → h(πh) C1 | C3 . (3.6)

Figure 3.1 shows instances of Alternaria generated by this L-system with the on-line tool

available at (Spriggs, 2007).

3.3 Modeling

We combine the grammar for Alternaria with the imaging system in Chapter 2 to build

a generative model for the observed microscope image stacks. In this and the next sec-
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(a) 3 iterations (b) 12 iterations

(c) An instance of vegetative hyphae with branches

Figure 3.1: Three-dimensional representation generated by the L-system for Alternaria.
Spores are modeled with ellipsoids and the hyphae with cylinders. The top-left panel
shows the growth of a simple structure after three iterations (a), followed by a branch of
development after 12 iterations (b), and an instance of the complete grammar (c). The
images were generated using the Alternaria L-system tool available on-line at Spriggs
(2007).
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tion we present a statistical model for the complete structure of Alternaria based on its

grammar. We also describe how the image formation process utilizes our model for the

imaging system and an instance of the Alternaria model to generate data. Given a stack

of captured images containing Alternaria, we aim to infer an instance of the grammar that

best fits the data

3.3.1 Grammar-based structure

We model the structure of Alternaria for statistical inference based on its grammar for

growth. We represent its hyphae and spores as an ordered set of cylinders and ellipsoid

substructures, and enforce connectedness among these primitives elements to one apical

growth and multiple lateral branches. The cylinder and ellipsoid substructures are the

geometric primitives used in our model. The model has a root position and direction of

growth given by (po, ϕo, ϑo), where the position is in the 3-D imaging window W . The

growth direction is defined by two Euler angles for symmetric objects, i.e., ellipsoids and

cylinders. Denote the space containing all root position and orientations by P.

Let the i-th apical hypha with mh number of branch hyphae be defined as a collec-

tion of geometry parameters and topology indices that describe which substructures are

attached in the ordered set

h
(mh)
i = (l, w, ϕ, ϑ, λ, j, k1, . . . , kmh) . (3.7)

The length and width of the hypha cylinder is denoted l, w, while its orientation is given

by two Euler angles relative to the growth direction of its apical parent. The cylinders

are radial symmetric, so only two angles of rotation are necessary to describe all possible

orientations. As in the independent ellipsoid model of Chapter 2 the substructures of the

complete Alternaria model have an average opacity λ ∈ [0, 1], or absorption rate, in the

image.

The parameter subset (j, k1, . . . , kmh) define topological information for a hypha sub-

structure. The index j specifies which of the other substructures in the ordered is the apical

out-growth of this one. The lateral branching substructures are indexed by k1, . . . , kmh .
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Figure 3.2: An example of a spore sj , lateral branch bk, and apical hypha hi, and how
they are connected in the model of Alternaria.

We similarly define the spore and branch hypha substructures, s(ms)
j and b(mb)

k . A

lateral branch hypha, however, has two additional parameters. Since observing infinite

recursion in the growth of Alternaria is highly unlikely, we parameterize the level of

each lateral branch substructure with an integer t ≥ 0. This gives the depth level of a

hypha with respect to the root element. Branch hyphae also parameterize the normalized

position along the major axis of its parent where the branch is located, d ∈ [0, 1]. The

position of all descendant substructures is determined by their size and relative orientation

to their parent. The root substructure of the model has a base orientation and position as

previously described. The diagram in Figure 3.2 illustrates the geometric and topological

substructure parameters and their relationships for a small example.

For the purposes of defining our statistical representation and inference algorithm,

we describe the parameter space over the complete structure model for Alternaria. Let

n = (nh, ns, nb) be the number of substructure elements in the model. Then the number

of branch hyphae for each substructure lies in the space
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M =

{
m :

nh∑
i=1

mh,i +
ns∑
i=1

ms,i +

nb∑
i=1

mb,i = nb

}
. (3.8)

We further define parameter spaces over all ordered sets of substructure types. For all

ordered sets of nh apical hypha withmh branches, this is given by

H(nh,mh) = H(mh,1)
1 × · · · × H

(mh,nh )
nh . (3.9)

The parameterizations over all sets of spores and branches are similarly defined as

S(ns,ms) and B(nb,mb).

By combining the subspaces for root position and orientation, branch hypha distribu-

tion, and ordered sets of n substructures, we define the space over all Alternaria models

as

Ψ(n) =
⋃

m∈M

P× H(nh,mh) × S(ns,ms) × B(nb,mb). (3.10)

The construction of the space is such that an instance of the grammar for Alternaria can

be mapped into it.

3.3.2 Image formation

To handle the significant amount of blur in our image data, we utilize the model for

brightfield microscope imaging systems presented in Chapter 2. Specifically, we follow

Section 2.3.2 and represent the point spread function of the microscope with the 3-D

response function h̃(x, y, z) defined in equation (2.3). The model for the imaging system

is parameterized by α, β, γ of the PSF and υ for the ambient background pixel intensity.

Similar to before, let θ(n) = (φ,ψ(n)) be an instance of the parameter space Φ×Ψ(n)

defined over the grammar-based structure and imaging system models. Then the space of

potential solution spanning all structure and imaging configurations is

Ω =
⋃
n∈N3

n×Φ×Ψ(n) . (3.11)
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Given a
(
n,θ(n)

)
∈ Ω, we generate a model-scene image stack Iθ(i, j, k) by intersecting

all of the geometric substructure primitives in the structure model with a set of equally

spaced planes parallel to the microscope focal plane. The stack of images can be thought

of as an estimate of the unobserved microscope images, without any distortions from the

imaging system. The image stack approximates the optical sectioning performed by the

microscope at stepped focal lengths.

The pixels intensity values of the model-scene are given by the imaging system back-

ground parameter and substructure intensities. Background pixels of Iθ(·) have the high-

est saturation with value υ. Pixels inside a plane intersected with a cylinder or ellipsoid

belonging to a substructure with opacity λ have the value υ (1 − λ). Figure 3.4 shows

an illustration of the optical sectioning and rendering process of the model-scene for the

complete Alternaria structure model.

We model the image data as statistically generated by the structure representation cap-

tured under the effects of the imaging system. Conditioned on a model-scene Iθ(·) and

imaging system h̃(·), pixel intensities in the 3-D image data are generated from indepen-

dent Gaussians. The means of these Gaussians µIθ(i, j, k) are derived exactly as in (2.6)

from the model-scene convolved with the PSF. The variances σ2
Iθ(i, j, k) are also a func-

tion of the convolved model-scene and PSF and defined in (2.7). The effects of blurring

the model-scene with the PSF to generate hypothesis of observed image data can be seen

in Figure 3.4.

3.4 Inference

For a stack of Alternaria image data I(i, j, k) in the 3-D window W , our goal is to

discover the set of connected cylinders and ellipsoids in the model (n,θ(n)) ∈ Ω that

best fits the data. To do this, we follow a similar process as in Chapter 2 and formulate a

Bayesian statistical inference problem by defining a posterior over the model space given

the image data and search for a maximum. The posterior distribution in this case has the

form
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p
(
n,θ(n) | I

)
= kp L

(
I | n,θ(n)

)
π
(
n,θ(n)

)
, (3.12)

with the normalization constant kp, L(· | ·) is the likelihood of the image data, and π(·) is

the model prior.

Conditioned on our structure and imaging models, we apply the i.i.d. Gaussian pixel

assumption of Chapter 2 with means and variances given by the model-scene convolved

with the PSF. The likelihood function over image stacks is then the same as before, with a

product of Gaussian pixel probabilities, as in equation (2.9). The prior information for our

complete Alternaria structure model is quite different than the independent spore model,

however, and a more detailed description of it is given below.

3.4.1 Structure and imaging priors

The prior over parameters in Ω assumes independence between the structure and imaging

models and is defined as

π
(
n,θ(n)

)
= πΦ(φ) πΨ

(
n,ψ(n)

)
. (3.13)

The priors for the imaging parameters φ are distributed according to independent Gaus-

sians with relatively uninformative hyperparameters. The position of the Alternaria root

po ranges uniformly over the 3-D image windowW that has volume VW . Since the ori-

entation and position of a substructure in Alternaria is determined by the configuration of

its parent and its own internal parameters, we model each substructure as conditionally

independent given its parent.

The density function for each substructure is composed of independent subdensities

defined over its parameters. We assume that the two minor axis of spore ellipsoids are

equal, so for both ellipsoids and cylinders we only need to specify orientation and size

parameters. The Euler orientation angle ϕ is Gaussian distributed over [0, π], and ϑ is

uniformly distributed over [−π, π]. We define cylinder and ellipsoid size with widthw and

length l parameters, which are also Gaussian distributed. The opacity λ is just as before,

uniformly distributed over [0, 1]. The probability a substructure is added either laterally or
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apically is ph, ps, pb. The lateral position d of a branch hypha is Gaussian distributed over

[0, 1], and the probability that a branch is created at depth t is geometrically distributed.

Let aj be the parent substructure of hypha hi in ψ(n). Then the density function for a

hypha is given by the set of independent subdensities over branch type, size, orientation,

and opacity,

fh(hi |aj) = ph fw,l(hi |aj) fϕ,ϑ(hi |aj) fλ(hi |aj) . (3.14)

The probability of lateral attachment ph is a constant. Each of the other subdensity func-

tions are defined as

fw,l(hi |aj) =
σ−1
w σ−1

l

2 π
exp

[
−(wi − wj)2

2σ2
w

− (li − µl)2

2σ2
l

]
, (3.15)

fϕ,ϑ(hi |aj) =
1

π

σ−1
ϑ√
2π

exp

[
−(ϑi − µϑ)2

2σ2
ϑ

]
, (3.16)

fλ(hi |aj) =
σ−1
λ√
2π

exp

[
−(λi − λj)2

2σ2
λ

]
. (3.17)

The density function for a spore fs(si |aj) is similarly defined. The function for a branch

hypha, however, is slightly different with additional factors for normalized branch posi-

tion d and level t,

fb(bi |aj) = pb fw,l(bi |aj) fϕ,ϑ(bi |aj) fλ(bi |aj) fd(bi |aj) ft(bi |aj) . (3.18)

While the size, orientation, and opacity subdensities are the same as above, the attaching

branch position d and topology depth parameter t are distributed according to
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fd(bi |aj) =
σ−1
d√
2π

exp

[
−(di − µd)2

2σ2
d

]
, (3.19)

ft(bi |aj) = (1− αt)ti α . (3.20)

We model the probability of one or more substructure types existing in the imaging

window W with a Poisson process parameterized by intensities νh, νs, νb. To eliminate

the possibility of intersection, we include a term in the prior that restricts substructure

interaction. Specifically, we aim to eliminate intersection between spores and hyphae.

Intersection in this case is defined as simple geometric overlap between cylinders and

ellipsoids. Due to the degrees of freedom in the model, parameterizations of structure

could result in self-intersection, which is obviously not possible in the real data. The

prior probability for an Alternaria model is then

πΨ

(
n,ψ(n)

)
= knπ

1

VW

νnhh e−νh

nh!

nh∏
i=1

χ(hi 0 aj 6=i) fh (hi | parent(hi))

× νnss e−νs

ns!

ns∏
i=1

. . .
νnbb e−νb

nb!

nb∏
i=1

. . . , (3.21)

where knπ is a normalization constant for the truncated subdensity functions, a is any type

of substructure in the model, and 0 denotes no geometric intersection. The characteristic

function χ(·) yields 1 for true and 0 otherwise.

3.5 Sampling

As in Chapter 2, we use reversible-jump Markov chain Monte Carlo sampling for infer-

ence of the most likely model under the posterior (3.12). We sample within a topology of

the Alternaria structure and imaging system using diffusion moves, and sample changes

to the topology using jump moves. By alternating between these two types of moves, we

explore the full parameter space of the Alternaria structure imaged under a microscope.
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We construct the moves in the sampler such that it follows a Markov chain that converges

to the posterior and draws representative samples, while keeping track of the sample with

maximum probability.

We use the Metropolis-Hastings (MH) algorithm for MCMC (Metropolis et al., 1953;

Hastings, 1970) under both diffusion and jump moves. At each iteration, the m-th move is

run with probability r(m) and a new model (n, θ̃(n)) is proposed. If the proposed model

is a likely to have generated the observed data under the posterior, it is accepted with

high probability. For jump moves, we modify the standard MH acceptance probability

to enable transitions between parameter spaces containing different Alternaria topolo-

gies (Green, 1995, 2003).

3.5.1 Sampling within a structure topology

The diffusion moves for sampling with in a topology of Alternaria and modifying a sub-

structure in (n,θ(n)) include rotate, size, opacity, shift, and lateral. We also define moves

to update the PSF and background parameters. The proposal distributions for diffusion

moves are obtained by modifying the prior (3.13). For parameters updated in a move, we

replace their subdensity in the prior with a Gaussian that has means equal to correspond-

ing parameters in the previously accepted model.

The proposal for substructure size follows the same pattern as the proposal for position

change in (2.17). Specifically, the size proposal distribution for randomly selecting the

j-th hypha and resizing it is

qsize

(
θ̃(n) | θ(n)

)
=
knsize
nh

[
n∏
i 6=j

χ(ai 0 h̃j)

]

×
σ−2
w,l

(2 π)(3/2)
exp

[
−(w̃j − wj)2 + (l̃j − lj)2

2σ2
w,l

]
, (3.22)

where σ2
w,l is a small variance and knsize is a normalization constant. The structure model

of Alternaria is connected, so it’s position is determined by the root element position and

the size/orientation of all the substructures. For this reason, the shift proposal (2.17) is
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slightly modified to be applied to all the substructures in the model. All the other moves,

such as opacity and rotate, are similar as before. For a branching hypha, we define a

proposal to change the connection point d with the base structure

qlateral

(
θ̃(n) | θ(n)

)
=
knlateral
nb

[
n∏
i 6=j

χ(ai 0 b̃j)

]
σ−1
d√
2π

exp

[
−(d̃j − dj)2

2σ2
d

]
, (3.23)

The proposal distributions for other diffusion moves are constructed in the same way.

We use the MH algorithm to generate samples from the posterior 3.12. For the m-th

diffusion move, the acceptance probability of a proposed change to the model is

αm

(
n, θ̃(n)

)
= min

{
1,
p(n, θ̃(n) | I) qm(θ(n) | θ̃(n))

p(n,θ(n) | I) qm(θ̃(n) | θ(n))

}
. (3.24)

This probability ratio maintains the detailed balance condition in the Markov chain and

ensures convergence to the target distribution. For details, refer to Appendix A.

For the size diffusion move, expanding the acceptance probability (3.24) results in

many terms canceling out. This includes the difficult to compute normalization constants,

the proposal distributions, and most of the prior. The result is a ratio of likelihoods, size

prior ratio, and a test for intersection. The acceptance probability for changing the size of

the j-th hypha is then

αsize

(
n, θ̃(n)

)
= min

{
1,
L(I | n, θ̃(n)) fw,l(h̃j)

L(I | n,θ(n)) fw,l(hj)

n∏
i 6=j

χ(ai 0 h̃j)

}
. (3.25)

The rotate, opacity, and shift moves all similarly reduce, with the opacity acceptance not

requiring an intersection test. A change to the lateral attachment point of a branch hypha

bj follows this form as well

αlateral

(
n, θ̃(n)

)
= min

{
1,
L(I | n, θ̃(n)) fd(b̃j)

L(I | n,θ(n)) fd(bj)

n∏
i 6=j

χ(ai 0 b̃j)

}
. (3.26)
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The diffusion acceptance probabilities for the imaging system parameters φ are con-

structed in the same way, but as with the opacity move, excluding the intersection test.

3.5.2 Sampling structure topologies

The jump moves in the sampler modify the topology of the Alternaria structure model

by proposing to add or remove substructure pieces and accepting or rejecting. A set of

birth/death moves create and prune spore and hypha substructures at apical or lateral

positions. For apically connected hyphae and spores, split/merge moves break apart or

join together two substructures. A lateral branch can be split or merged with its parent,

as well. Finally, a set of switch moves transition one or more hypha to a spore and vice-

versa. This collection of sampler moves embody the grammar rules from Section 3.2 and

guide the sampler to discovering likely topologies given a stack of observed images.

Apically attaching a hypha to another substructure is only possible if that substructure

does not already have an apical attachment. For a particular topology, let nbirth be the

number substructures that have no attachment at there apical growth point. A hypha

birth move consists of randomly selecting one of these nbirth substructures, say ai, and

attaching a hypha h̃ generated from the normalized hypha density function (3.14) in the

model prior. We define the probability of this birth proposal as

qbirth(h̃ |ai) =
kbirth

nbirth
fh(h̃ |ai) . (3.27)

During a hypha death move, one of nbirth substructures with an apical hypha is randomly

selected to be pruned. We propose removing only one substructure per move, so the hypha

to prune must not have any lateral or apical attachments. A proposal distribution over the

death move is not necessary, since the selected substructure is completely removed.

The complementary proposals for split/merge consist of selecting a single hypha and

splitting it in two, or selecting two apically connected hyphae and merging them. For the

split move, we use the width, orientation, and opacity as the mean value of Gaussians to

generate the new hyphae; half the length is the mean of a Gaussian giving the lengths of

the split. The probability of selecting the i-th of nsplit hyphae and splitting it is given by
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qsplit(h̃1, h̃2 |hi) =
ksplit

nsplit
gh(h̃1, h̃2 |hi) . (3.28)

The density gh(·) comprises the product over split hypha width, length, orientation, and

opacity subdensities. For example,

gw(h̃1, h̃2 |hi) =
σ−2
w

2 π
exp

[
−(w̃1 − wi)2 + (w̃2 − wi)2

2σ2
w

]
(3.29)

gl(h̃1, h̃2 |hi) =
σ−2
l

2 π
exp

[
−(l̃1 − li/2)2 + (l̃2 − li/2)2

2σ2
l

]
, (3.30)

with the orientation and opacity subdensities constructed in the same way as the

width (3.29). The merge move is defined analogously to 3.28 with the average width,

orientation, and opacity of two hyphae used as Gaussian means for the merged hypha.

The length is Gaussian distributed according to the sum of the merged lengths. We de-

note this proposal qmerge(h̃ |hi,hj) and define it in the same way as above.

Both sets of birth/death and split/merge jump moves are defined over spore ellipsoids

with slight modifications from hypha cylinders. The proposal distribution for switching

one type of substructure from another utilizes previously defined prior parameters and

the fact that the geometric parameters have the same interpretation for spore ellipsoids as

hypha cylinders.

The proposal distributions for adding, removing, and switching structure generate

candidate topology changes. We evaluate how good the proposals are and either accept

or reject them based on the reversible-jump Metropolis-Hastings algorithm (Green, 1995,

2003). As with the diffusion moves, the jump move acceptance probabilities are con-

structed to maintain the detailed balance condition. Thus, the posterior will be the sta-

tionary distribution of the trans-dimensional Markov chain followed by the sampler. For

the a hypha birth move, we define the reversible-jump acceptance probability to be
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αbirth

(
n+ 1, θ̃(n+1)

)
= min

{
1,

p(n+ 1, θ̃(n+1) | I)

p(n,θ(n) | I)

r(death)

r(birth)

× 1

qbirth(h̃ |aj)

∣∣∣∣∣ ∂(θ̃(n+1))

∂(θ(n), h̃)

∣∣∣∣∣
}
. (3.31)

The proposed hypha is directly inserted into the model, so the change in dimensionality

is a one-to-one mapping from (h̃,θ(n)) → θ̃(n+1), making the Jacobian 1. Let nbirth be

the number of substructures that can be extended apically with a proposed hypha. Then

the apical hypha birth move (3.31) reduces to

αbirth

(
n+1, θ̃(n+1)

)
= min

{
1,
nbirth νh
nh+1

L(I | n+1, θ̃(n+1))

L(I | n,θ(n))

× r(death)

r(birth)

n∏
i=1

χ(ai 0 h̃)

}
. (3.32)

The normalization constant and density in the hypha proposal (3.27) cancel with the prior.

A test for intersection remains to guard against adding a new spore that overlaps with any

others already in the model.

The hypha death move complements the birth move by proposing to prune a hypha

that does not have any attaching substructures, e.g., one that was just birthed. Of these

nbirth candidate hyphae, one is randomly selected with uniform probability and removed

from the model. The acceptance probability for a hypha death move is the inverse of

(3.32), but with the unnecessary intersection test removed,

αdeath

(
n−1, θ̃(n−1)

)
= min

{
1,

nh
nbirth νh

L(I | n−1, θ̃(n−1))

L(I | n,θ(n))

r(birth)

r(death)

}
. (3.33)

The acceptance probabilities for lateral hypha and spore birth/death moves are con-

structed in the same fashion.
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The split move for a hypha proposes two new hyphae of similar size to replace it. We

use the split proposal (3.28) to conditionally generate the split hyphae. We further include

the merge proposal probability qmerge(·) in the acceptance ratio to match dimensions,

αsplit

(
n+ 1, θ̃(n+1)

)
= min

{
1,

p(n+ 1, θ̃(n+1) | I)

p(n,θ(n) | I)

r(merge)

r(split)

× qmerge(hi | h̃1, h̃2)

qsplit(h̃1, h̃2 |hi)

∣∣∣∣∣ ∂(θ̃(n+1),hi)

∂(θ(n), h̃1, h̃2)

∣∣∣∣∣
}
. (3.34)

As with the death move, the merge acceptance probability is the reciprocal of its comple-

mentary move ratio. We create similar merge/split moves for the spore substructure.

The switch moves transitions a hypha to a spore and back again. For this proposed

change, we use the previous substructure as the mean value for a proposal of the other.

All attachments are transitioned, and the acceptance probability resembles those from the

diffusion moves.

3.5.3 Data-driven MCMC

The spores in the data are typically much larger than the hyphae and more darkly pig-

mented (Figure 2.1). However, unlike in Chapter 2, where we fit independent ellipsoids,

here we fit connected cylinders and ellipsoids to hyphae and spores. As such, we observe

that a hypha is often incorrectly fit to a spore and vice-versa. While we maintain a switch

move in the sampler to transition a substructure to another type, proposing the correct

substructure can require many iterations of the sampler. Thus we improve both the birth

and switch moves by analyzing the data before inference and building data-driven pro-

posals for spores. We use a similar process for proposal distribution construction as in

Chapter 2 and Tu et al. (2005, 2002); Zhu et al. (2000).

The replacement proposal distribution is similar to what we used for independent

spore detection in Section 2.6. We use a gradient-based surface point detection algorithm

and a coarse Hough transform for ellipsoids to obtain rough estimates of spores in the

data. The estimates are collected into a spore likelihood table, which we use as the new
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α β γ

mean stdev mean stdev mean stdev
A1 0.99 0.001 0.91 0.08 0.75 0.26
A2 0.84 0.14 0.68 0.4 0.64 0.24

Table 3.1: Mean PSF model parameters inferred from the Alternaria data from 10 random
starting states. The larger variance in the parameters for the second set is most likely from
not fitting as much structure.

proposal distribution. Although the estimates from the Hough transform are coarse, it is

tolerable because diffusion moves in the sampler will perfect the fit of proposed spores.

We also used data-driven methods in the sampler to speed-up the initial estimate of

the base structure in the model. We follow the assumption that the imaged growth of

Alternaria begins at the bottom of the microscopic image stack and proceeds upward.

3.6 Results

We evaluated the effectiveness of the model sampler on Alternaria image setsA1 andA2,

shown in Figure 2.1. A1 is composed of 102 images of size 800×800 pixels and A2 has

82 images of size 700×700. Since the data are so large, we down-sample them along rows

and columns to 20% of their original size. However, since the number of images in each

stack is already disproportionately small, we did not decrease the resolution in depth.

We ran the sampler from 10 random starting states on both data sets, each for 20, 000

iterations. Figure 3.3 shows four of the ten models fit to each data set. The sampler had a

more difficult time fitting the structure in A2; a narrow lateral hypha spawned very large

areas of structure. With more iterations we would expect to begin to fit more of it.

The average inferred background intensity for A1 and A2 was 0.74 and 0.72 with a

negligible standard deviation. Table 3.1 gives the inferred PSF model parameters for the

data sets. The PSF parameters for A2 have larger variance because not as much structure

was fit in the images as A1.

Figure 3.4 shows two images from A1 at different depths compared to corresponding
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(a) Surface of A1 (b) (c) (d) (e)

(f) Surface of A2 (g) (h) (i) (j)

Figure 3.3: The sampler was run on data sets A1 and A2 from 10 random starting states.
The first row shows a rendering of surface points from the gradient-based detection for
data-driven proposals (a) from setA1 and four of the inferred models (b)–(e). The second
row shows similar results for set A2 (f)–(j). We are clearly fitting Alternaria structure in
the data. If we continue to run the sampler, more of the structure would be fit, particularly
in the case of A2.
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inferred model-scene images. We construct the model-scene images by optically section-

ing the Alternaria model and convolving it with the point-spread function. From these

images we observe that simultaneously fitting structure and imaging models closely re-

sembles the image formation process, enabling us to obtain a more accurate fit to the

data.

3.7 Conclusion

Learning the structure of an object is one of the first steps in trying to understand its

function. Biologists recognize this fact and conduct many experiments that require an-

alyzing images of microscopic structures. We have shown that combining a grammar-

based specimen model with an imaging model is useful to automatically learn the 3-D

form of biological specimens in microscopic image stacks. From these inferred models,

we can extract quantitative information, and even learn about categories or species of the

structure. This is in contrast to simply counting pixels in the image plane occupied by

the projected 2-D shape of a specimen. In our approach, we understand geometric struc-

ture in 3-D and can give quantitative information about its size, shape, and topological

configuration.

In the following chapters, we broaden the approach presented here to modeling more

general categories of man-made objects composed of 3-D blocks, such as furniture. We

continue to build upon our basic idea of representing objects as a composition of 3-D ge-

ometric primitives that are independent of the imaging system viewing them. We further

show how categories of object structure, comprising 3-D shape statistics and topologies,

can be learned from data. Although not pursued in the biological structure work described

here, the methods we develop for learning object categories could be applied to Alternaria

for learning species-specific parameters across microscopic stacks of images. This would

enable us to quantify the defining traits of a species and to automatically classify which

species an instance of Alternaria belongs to.
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(a) Image 36 inA1 (b) (c) (d) (e)

(f) Image 48 in A1 (g) (h) (i) (j)

Figure 3.4: Simultaneously modeling the structure and imaging system more accurately
explains blurred microscopic images. Row one shows image 36 of A1 compared with
images at the same depth from the inferred model-scenes. Image 48 in the stack is shown
in the second row. The generated model-scene is the optically sectioned images of a fit
Alternaria and imaging system. Each column shows images generated by the model for
A1 corresponding to the same column of figure 3.3, e.g., images 3.4b and 3.4g are from
the model in figure 3.3b. The model-scene images for A2 have similar results.
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CHAPTER 4

Fitting 3-D Models of Object Structure to Single View Images

4.1 Introduction

In Chapters 2 and 3 we presented an approach for fitting three-dimensional models of

connected geometric primitives to image stacks of Alternaria captured under a micro-

scope. We separated the object structure model from the imaging system and inferred

both from data simultaneously. In this chapter and the next, we continue modeling ob-

ject structure with a collection of 3-D geometric primitives, but transition from biological

structure toward more general, man-made objects composed of block-like parts, such as

furniture. Moreover, rather than inferring structure from stacks of images comprising a

3-D data set, we learn structure models from single view 2-D images captured by a stan-

dard camera. The basic idea of our approach is to fit connected 3-D blocks to detected

image features of furniture objects, such as edge points. Figure 4.1 shows an example

image of a furniture object, the detected edges used for structure inference, and the 3-D

blocks representing object structure fit to the edges.

Although the data and domain of structure are different for furniture objects and bi-

ological structure, much of the approach presented here builds on our previous work for

modeling and inferring Alternaria. We continue to separate our 3-D representation for

objects from our model of the imaging system. This enables separating the variation of

object structure from the variation of the camera viewing it. We additionally continue

to model objects as comprising assemblages of 3-D geometric primitives. However, in

contrast with Alternaria where we represented hypha and spore substructures with cylin-

ders and ellipsoids, here we use cuboids, or blocks, for furniture parts. We also extend

our generative representation for object, camera, and image data, and further broaden our

Bayesian statistical inference framework for fitting these models to data simultaneously.

Thus, our approach for understanding furniture structure is, to a high degree, related to
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(a) Input image (b) Detected edge map

(c) Projected 3-D model contours

Figure 4.1: Example image of a furniture object (a), its detected edge map (b), and the
block-based structure and camera models fit to the edges (c). We follow a statistical,
generative representation for the detected edge points in (b) from the projected model
contours in (c). The representation generates edge point distances and orientations from
the object model with Gaussian error and accounts for noisy edge points and missing
detections.

fitting Alternaria. The primary difference is that here we use single view 2-D images and

model man-made, arbitrarily constructed objects.

The goal of our work with furniture objects is to learn models of structure from col-

lections of single view images. Specifically, we want to learn 3-D geometric primitive

assemblages for a category of objects and statistics over the shape and relative position of

those blocks. One challenge is developing good approaches for generating these models.

A second challenge is developing effective and scalable inference methods to learn model

details from readily available training data. For this chapter we focus on the latter—

inferring the size, position, and pose of a 3-D block model and the camera capturing it

from single view images. In Chapter 5 we present our approach for learning assemblages

of blocks that represent an object category.
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Given the form of a furniture category model, such as tables, the problem we face is

fitting 3-D blocks of the model to a 2-D image without knowing the camera parameters.

This is a difficult inference problem. In this chapter, we develop a robust approach for

simultaneously fitting a 3-D block model and camera parameters. We accomplish this

with an effective likelihood that connects geometric structure to image data. We also

introduce a novel sampling approach to fit the object and camera models to data. As in

many other inference problems, we need to deal with a large number of local maxima

in the posterior over parameters. Our problem is further complicated by the intricate

relationship between object and camera parameters. For example, changing the object

size and focal length leads to somewhat similar effects in the image. Thus reasonably

adjusting the perspective effect in a sampling paradigm requires having the notion of

variable correlation built into the sampler. If the sampler simply proposes changes to one

of these two parameters independent of the other, or a random combination of them, then

the proposal is likely to be rejected.

To effectively search the parameter space over object and camera models, we com-

bine Metropolis-Hastings and stochastic dynamics1 MCMC sampling algorithms (Sokal,

1989; Neal, 1993; Andrieu et al., 2001; Liu, 2001; Bishop, 2006). We observe that each

sampler has advantages in exploring our parameter space, and combine the two in such

a way as to harness the benefits of both. For the case of stochastic dynamics, we build

two types of samplers: Langevin (Neal, 1993) and Hyperdynamics (Voter, 1997a). The

dynamics are based on gradient information over our posterior and excel at following cor-

related regions of parameter space. To compute the gradient information for stochastic

dynamics, we use numerical differentiation which can be expensive. The Metropolis-

Hastings (MH) algorithm is significantly faster at proposing samples and has the ability

to traverse large regions of parameter space quickly. One issue with the MH algorithm,

however, is that proposal distributions often assume independence among parameters, so

acceptance of a move through parameter space with high correlation can require many

proposals.

1We refer to stochastic dynamics in a similar sense as Neal (1993), which is related to molecular dy-
namics, and more broadly, to statistical physics.
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Our specific combination of sampling algorithms achieves broad exploration of model

parameter space and fast convergence to regions of high probability. We follow Langevin

dynamics (Neal, 1993) to locate local maxima in our posterior, and then use subsequent

moves by the Langevin sampler to estimate the covariance matrix of the local region of

the posterior distribution. We then switch to Metropolis-Hastings (Metropolis et al., 1953;

Hastings, 1970) moves based on that covariance matrix, which is an effective way to leave

the region of that local maxima by approximating parameter dependencies and increasing

exploration in directions of high variance. Finally, to further consider maxima that MH

might be slow to visit, we occasionally transition to Hyperdynamics sampling (Voter,

1997a). We find this combination of sampling approaches to be effective, overcoming

some of the limitations of each individual sampler, and we expect that it is applicable to

a range of problems.

We demonstrate the effectiveness of our approach using a simple model for a basic

furniture object, tables. We are able to fit a basic table model to all images in a set of 32

single view images of tables using the sampling configuration. We emphasize that while

the model was chosen to be especially simple for studying the inference problem, the

method was developed to apply generally.

4.1.1 Related work

Many of the technical problems addressed in this chapter on sampling structure are re-

lated to the work of Sminchisescu and Triggs (2001, 2002, 2003) in the context of track-

ing human figures. Similar to our situation, a strong 3-D model, together with standard

projective geometry, leads to a sampling situation where the variables are significantly

correlated and sampling does not appear viable without addressing this. While tracking

human pose with a particle filter (Sminchisescu and Triggs, 2001, 2003), they introduce

covariance biased sampling for an already parametrized likelihood. Here we extend this

idea to where the likelihood is far less understood. In particular, we take advantage of

the Langevin sampling results to estimate the local structure of the likelihood, and then

use that for Metropolis-Hastings exploration of the likelihood. We also extend a another

sampling application of Sminchisescu and Triggs (2002) to vision, namely Hyperdynam-
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ics (Voter, 1997a).

Our work relates to a large body of work on model based vision, where determining

the pose of a known object in an image is a well known problem (Binford, 1971; Brooks,

1981; Pentland, 1987, 1990; Lowe, 1987, 1991; Huttenlocher and Ullman, 1990), and

doing so is a special case of determining an unknown camera. We go beyond that here

by developing an approach for more general imaging systems, and models that require

significant variation to capture a category.

4.2 Structure and imaging model

We describe in this section our model for 3-D object structure in an image and the camera

capturing it. We consider image edges as generated by the current model hypothesis and

projected by the hypothesized camera. Although edges are just one of many features avail-

able, they provide much of the structural form of an object. Taking a Bayesian approach

we reverse this forward model, and from edges detected in an image, simultaneously fit

the most likely 3-D object model and camera to have generated them.

Our goal is to learn the structural form of many objects. In this chapter, however, we

focus on a simplified representation for a a single 3-D table object composed of blocks. In

this way, we reduce the complexity from learning arbitrary structure models to developing

algorithms for inferring a given 3-D structure model from a 2-D image. In chapter 5

we utilize the ideas and algorithms developed here and give an approach for learning

structure models of multiple object categories. In what follows, we first describe our

simple example model for a table, followed by the details of our camera abstraction, and

then the image formation process and the corresponding likelihood model.

4.2.1 Table model

We use a simple parametrized model that encodes the structural form of a table furniture

object. Thus, for this chapter, we specify the model topology by hand and construct ta-

bles from cuboid polyhedra, or blocks. An advantage of using blocks is that they generate

edges corresponding to potential edges in an image under many different lighting con-
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ditions. The table model comprises a set of five such blocks: its surface and four legs.

We constrain the legs to be equally sized, of square width and positioned under the table

symmetrically with respect to the length and width of the surface. The position of the

table is specified as the projected center point po ∈ R3 of the surface onto the ground

(x, y-plane). The rotation of the table is about a vertical axis from its position through the

center of the surface.

Although our model topology is specified in advance, it is highly variable. A total

of 10 parameters enable us to fit it to any number of possible configurations, potentially

even good fits to objects only resembling tables. The parameters for the table include the

size of a surface block w, h, l and the square leg thickness t; the symmetric position of

the legs under the surface with respect to the width dw and length dl; and a rotation angle

ϕ about a central axis on the surface. We define the structure parameters of a table as

s = (po, ϕ, w, h, l, t, dw, dl) (4.1)

Non-negative ranges are defined over each of the size parameters, and the rotation angle

varies over [−π, π]. Figure 4.2 shows an example of the table model.

4.2.2 Camera model

In the paradigm of learning about an object from a single view, the full specification of

the camera and the object position and scale leads to a redundant set of parameters. We

choose a minimal set for inference that retains full expressiveness as follows.

Without a priori information we are unable to distinguish the actual size of an object

from its distance to the camera. For this reason we constrain the camera to be at a fixed

distance from the world origin and accept knowing the size of an object up to a scaling

factor. If at some point we learn what the scaling factor is, we would be able to plug this

in and know actual sizes and positions of objects in the world.

We assume that objects of interest are variably positioned near the horizontal ground

plane (y = 0) and constrain the camera to always look at the world origin. Because we

allow the object to rotate around its vertical axis, we only need to specify the camera
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Figure 4.2: The camera model is constrained to reduce the ambiguity introduced in learn-
ing from a single view of an object. We position the camera at a fixed distance and direct
its focus at the origin; rotation is allowed about the x-axis. Since the object model is al-
lowed to move about the scene and rotate, this model is capable of capturing most images
of a scene.
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zenith angle, ϑ. Thus we set the horizontal x-coordinate of the camera in the world to

zero and allow ϑ to be the only variable extrinsic parameter. In other words, the position

of the camera is constrained to a circular arc on the y, z-plane. See Figure 4.2 for an

illustration.

We further model the amount of perspective in the image from the camera by param-

eterizing its focal length, f , and inferring it from the image. The focal length parameter

strongly interacts with the scale, s, of the objects in the world. It affects the convergence

of parallel lines, however, and specifies a unique image. Our camera instance parameters

is then given by

c = (ϑ, f, s) , (4.2)

where ϑ ∈ [−π/2, π/2], and f, s > 0.

4.2.3 Generative edge model

We model image edges as generated by the projected polyhedron contours of our object

representation. Each point along the projected contours statistically generates a detected

edge point in the image. Since we detect edges with a standard Canny algorithm (Canny,

1986), the generated detections comprise position and gradient information. Specifically,

each point on a projected contour generates an edge point position with some Gaussian

error, and a gradient direction similar to the projected contour orientation, also with Gaus-

sian error.

Suppose the correspondences between points on a projected model contour and their

generated edge point detections are known. We model the edge points as i.i.d. Gaussian

with respect to their distance and orientation away from the model points. We define the

distance dij of a data point from a model point as the perpendicular distance from xi to

the projected model edge that created mj . Likewise, the orientation angle of a data point

from a model point is defined as the angle φij between the gradient vector gi of xi and the

perpendicular direction of the edge vj for mj . Specifically,
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dij = ‖xi −mj ‖ (4.3)

φij = cos−1

(
gT
i vj

‖gi‖ ‖vj‖

)
. (4.4)

We limit the maximum distance an edge point can be from a model point to accommodate

background clutter in the scene.

For an image and its detected edge points, we test the validity of an object model

generating it by rendering the model contours into a scene image and computing a like-

lihood. We assume independence of observed edge point detections conditioned on the

model. For each pixel, we decompose the likelihood into four exclusive terms: the like-

lihood of a detected edge point, background, a noisy edge point, or a missing detection.

The term chosen is decided by the edge detection result and model point generating it, if

any. The likelihood of an image given camera and object parameters θ = (c, s) is then

L(I |θ) =
N∏
i=1

[
eθ(xi)w1i + ebg w2i + enoisew3i + emissw4i

]
, (4.5)

where the likelihood of the i-th edge point being generated by the j-th model point is

given by

eθ(xi) =
σ−1
d σ−1

φ

2 π
exp

[
−
d2
ij

2σ2
d

−
φ2
ij

2σ2
φ

]
. (4.6)

If a point on a model contour does not match to any edge point in the data, then the pixel

positioned under the projected model point is missing an edge point with constant proba-

bility emiss; there is no evidence in the data for this piece of the model. A complimentary

mismatch occurs when a detected edge point does not match to any model point. We label

such detections as noisy edge points occurring with probability enoise. Finally, a pixel con-

tains background with probability ebg when no edge detection is made and no projected

model points are nearby.

We assume that the correspondence is known between the i-th edge point pixel and the
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j-th model point generating it. With this information, we assign binary values to weights

wi to indicate the type of correspondence estimated for the i-th pixel. The weights are

assigned such that they sum to one for each pixel. In Appendix C we consider the case

of avoiding hard, binary assignments to the wij , and instead allow them to be continuous

weights estimated from training data; we learn four different weight vectors, for use in

each of the four pixel assignment types. In Chapter 5 we extend the image likelihood

model beyond just edge points and further formalize point correspondence estimation.

We combine the likelihood with a prior over the object and camera model parameters

defining a posterior distribution for Bayesian inference

p(θ | I) = k L(I |θ) π(θ) . (4.7)

We model all parameter priors in π(·) as Gaussian, with the exception of the rotation an-

gle ϕ of the object, which we set as uniform over [−π, π]. Although the prior is fairly

simple, the resulting posterior distribution is extremely complex, due to the geometric

primitive representation and their projection. For this reason direct optimization is out of

reach and we use a suite of sampling approaches to fit our model to data. But before de-

scribing our sampling strategy, we first show how model and edge point correspondences

are estimated.

In order to compute the likelihood and posterior of the image data, we must estimate

model and data edge point correspondences. For each model edge point mr we find the

set of candidate data edge points {ei, ej, ek, . . .} whose gradient vectors would generate

intersecting paths with mr if traced through the image. From the candidate set we declare

the closest data edge point ei as corresponding to mr. At this point we have a one-

to-many correspondence between a data edge point and multiple model points, ei ↔
{mr,ms,mt, . . .}; it is possible for ei to be closest among all data edge points to more

than one model point in the direction of its gradient vector. To resolve this and generate a

one-to-one correspondence, we further select the model point from this set that is closest

to form the correspondence ei ↔ mr. In Chapter 5 we consider the case of allowing a

one-to-many correspondence between edge and model points.
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The correspondence computation is relatively expensive for each new model hypothe-

sis we evaluate under the likelihood. To speed up this processing we precompute parts of

the edge point correspondence and store them. For each edge point detected in the image

at program initialization, we trace across the image in the direction of its gradient vector

and store potential model point correspondences with precomputed Gaussian distance and

discretized angle probabilities. Thus during sampling when we compute the likelihood,

we need only render the model image and iterate over the projected model points; we

can look-up in constant time the data edge point correspondences and their probabilities,

saving a tremendous amount of computation per iteration.

Our inference method of sampling requires the image likelihood to be computed fre-

quently. So we accelerate the object model projection into an image by using offscreen

rendering. We call OpenGL rendering routines implemented for pbuffers on modern

graphics hardware to generate the projected wire-frame model image of the polyhedron.

Hidden, or occluded, edges in the wire-frame model pose a problem, since they do not

appear in the data. We remove them using a combination of stencil and depth buffers. For

each polygon in the object model, we render its wire frame into the stencil buffer, creat-

ing a mask. We then render the filled polygon into the depth buffer, testing against the

mask in the stencil buffer. This results in the depth buffer containing only non-wire-frame

portions of the polygon. Once this is done for all polygons, we render their wire-frames

into the color buffer testing against the depth buffer to occlude hidden lines.

4.3 Sampling

We sample the posterior to find the best set of parameters that fit an image. Given enough

iterations, a good sampler converges to the target distribution and an optimal value would

be readily discovered in the process. However, our posterior distribution is highly con-

voluted with many sharp narrow ridges for close fits to the edge points. In our domain,

as in many similar problems, standard sampling techniques tend to get trapped in these

local extrema for long periods of time. Our strategy is to combine a mixture of sampling

techniques with different strengths in exploring the posterior distribution.
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In particular, we cycle through Langevin dynamics for fast descent into deep wells

and generation of samples used to locally estimate the mode of that well. We then switch

to a covariance scaled Metropolis-Hastings sampler that uses the Langevin samples to

construct a proposal distribution that samples much more broadly in directions of highest

variation, which increases the likelihood of escape from the local extrema. Finally, we

use hyperdynamics sampling to bias the posterior function towards areas of transition

between extrema, accelerating the chances of moving between extrema. What follows is

a description of each sampler.

4.3.1 Langevin dynamics

Langevin sampling is a type of stochastic dynamics that uses an analogy from physical

systems to generate representative samples from a target distribution (Neal, 1993; Bishop,

2006). The idea is similar to stochastic gradient descent, where the sampler rapidly de-

scends to local minima, or states, and it spends a much of its time there generating sam-

ples. Occasionally it transitions to a new state, with a frequency dependent upon the

barrier between the two states.

In this setting, we let the negative log of the posterior (4.7) represent the potential

energy function in a hypothetical Hamiltonian system, with our parameters θ = (c, s)

comprising the position variables and an introduced, artificial momentum r = dθ/dτ in

phase space. We also define a kinetic energy for the introduced momentum r, so that

E(θ) = − log p(θ | I) (4.8)

K(r) =
1

2

N∑
i=1

r2
i . (4.9)

The total energy in phase space is then given by the HamiltonianH(θ, r) = E(θ)+K(r),

which we use in the canonical distribution over phase space

p(θ, r) =
1

ZH
exp (−H (θ, r)) . (4.10)



103

Applying a force to a particle in this system is equivalent to updating its position by a

change in momentum, which is given by the negative gradient of the potential energy

function,

dr

dτ
= −∇E(θ) . (4.11)

The dynamics conserve total energy and volume in phase space, leaving the canonical

distribution invariant. We use this fact in a stochastic setting with the Langevin equation

to generate samples. Specifically, we discretize time with a fixed step size ε and generate

samples from the posterior as follows

θ̃i = θi −
ε2

2

∂E

∂θi
(θ) + ε ηi , (4.12)

where ηi is sampled from a Gaussian with mean zero and variance one. We estimate the

gradient of our posterior with finite differences in each of the model parameters.

While effective, this discretization can introduce large amounts of error and bias in

the samples if ε is large. Further, if ε is selected to be small, the samples degenerate to a

random walk behavior. This process is effective, however, for quickly converging to local

minima in the energy function and exploring the region once within. Figure 4.3 shows

how varying ε effects the Langevin dynamics on Müller’s potential (Müller, 1980)

V (x, y) =
4∑
i=1

Ai exp
[
ai (x− xi)2 + bi (x− xi)(y − yi) + ci (y − yi)2

]
, (4.13)

where A, a, b, c, x, y are defined as in (Müller, 1980) with the constants
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A = (−200,−100,−170, 15) (4.14)

a = (−1,−1,−6.5, 0.7) (4.15)

b = (0, 0, 11, 0.6) (4.16)

c = (−10,−10,−6.5, 0.7) (4.17)

x = (1, 0,−0.5,−1) (4.18)

y = (0, 0.5, 1.5, 1) . (4.19)

The example in Figure 4.3 shows how Langevin dynamics are effective at exploring lo-

cal minima. We should note that Bussi and Parrinello (2007) recently described how to

improve a Langevin sampler to more accurately follow the dynamics (4.11) and integrate

over phase space. Thus future applications of Langevin sampling should consult this work

for potentially improved results. In Chapter 5 we also describe an improved stochastic

dynamics algorithm for generating samples to approximate the integration based on the

Verlet algorithm (Verlet, 1967, 1968).

4.3.2 Covariance scaled Metropolis-Hastings

When we run the Langevin sampler on our log posterior potential, it converges quickly to

a local minimum and spends most of its time exploring this state. Our idea is to use what

appears to be a limitation as a way to sample from the distribution more effectively overall.

To do this we approximate the mode of the state the Langevin sampler is currently trapped

in with a multivariate Gaussian and estimate its parameters from the generated samples.

We then use this approximation as a proposal distribution in the Metropolis-Hastings

algorithm to efficiently explore correlated parameter directions of maximum variance and

quickly jump to new states.

The Metropolis-Hastings (MH) algorithm is a powerful MCMC sampling technique

to generate unbiased and representative samples from a target distribution (Metropolis

et al., 1953; Hastings, 1970; Neal, 1993; Forsyth et al., 2001; Bishop, 2006). The central
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(a) ε = 0.01 (b) ε = 0.02

(c) ε = 0.035 (d) ε = 0.05

Figure 4.3: Langevin dynamics sampling on Müller’s potential (4.13) under varying time
discretization step sizes ε. Each panel shows the result of the dynamics after 5000 itera-
tions, initialized from the same point. Notice in (a) the path of the dynamics has a large
amount of random walk. As ε increases, however, the rate of convergence to local minima
increases as well. When the step size becomes large (d), rapid exploration of all minima
is possible, but with a significant amount of sample bias.
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concept of the algorithm is to propose samples from a distribution q(θ̃ |θ), which can be

easily sampled, and accept or reject the samples with probability

α(θ̃ |θ) = min

{
1,
p(θ̃) q(θ | θ̃)

p(θ) q(θ̃ |θ)

}
. (4.20)

Since the sampler follows a Markov chain, and it maintains the detailed balance condition

p(θ) q(θ̃ |θ)α(θ̃ |θ) = p(θ̃) q(θ | θ̃)α(θ | θ̃) , (4.21)

it is sufficient that the sampler will have as its invariant the posterior, assuming there are

no zero probability transitions.

Depending on the proposal distribution, however, the MH sampler can take a very

long time to explore the state space thoroughly. One could increase the variance in the

proposal distributions, but without knowing which parameters have the most variation

or correlation in the current state, the rejection rate will likely be higher. Instead of

doing this, we construct a Gaussian proposal distribution whose covariance matrix Σ(N) is

estimated with maximum likelihood from samples previously drawn during N iterations

of Langevin dynamics.

The samples generated during the run of the Langevin sampler are highly concen-

trated around a local mode in the posterior. If we eigen-decompose the covariance matrix

estimated from these samples,

Σ(N) =
D∑
i=1

λiuiu
T
i , (4.22)

we see that after a number of iterations the principle components ui change very little,

implying convergence to a good estimate of the local mode the sampler is trapped in.

This is illustrated in Figure 4.4, which shows the Frobenius norm of estimates for the

eigenvectors of Σ(N) successively subtracted at 100 iteration intervals.

Rather than use our estimate of the covariance matrix directly in the MH proposal

distribution, we take inspiration from Sminchisescu and Triggs (2001, 2003) and rescale

its k largest principle components



107

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  10  20  30  40  50  60  70  80  90  100

F
ro

be
ni

us
 N

or
m

 o
f C

ov
ar

ia
nc

e 
E

ig
en

ve
ct

or
s

Iteration x100

Figure 4.4: Frobenius norm for covariance matrix eigenvectors estimated and subtracted
at successive intervals of 100 iterations of the Langevin sampler. Each curve represents
starting the sampler from a random state on five different images

Σ̂(N) = s

k∑
i=1

λiuiu
T
i +

D∑
j=k+1

λjuju
T
j . (4.23)

This has the effect of magnifying the variation in directions of most uncertainty in the

current state. In our model space, that means correlated parameters representing large

changes with little observable difference, i.e., depth, will be sampled more broadly.

4.3.3 Hyperdynamics

Although covariance scaled Metropolis-Hastings has the potential to jump large distances

in parameter space with higher acceptance rate, it can still get trapped. This is espe-

cially likely to happen when the Langevin dynamics descends into a particularly deep

and narrow minima. In this case there is little variation and the estimated Gaussian for the

local mode will have extremely small variation. We approach this problem with hyper-

dynamics, which was first introduced in computational chemistry by Voter (1997a,b) and

later introduced for importance sampling in vision problems by Sminchisescu and Triggs

(2002). By applying a particular biasing function to the potential energy, we virtually ac-
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(a) Müller’s potential V (x, y)

(b) Biased potential V (x, y) + Vb(x, y)

Figure 4.5: Sampling Müller’s potential energy function with Langevin dynamics and
hyperdynamics. The samplers were cycled eight times, with 1000 iterations of Langevin
followed by 100 iterations of hyperdynamics per cycle. The sampler parameters were
ε = 0.02, h = 125, d = 0.05. Notice how the hyperdynamics concentrates samples
around saddle points, while the Langevin dynamics fall back into local minima. Cycling
the two algorithms accelerates transitioning between local minima.
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celerate the rate of sampling by favoring areas of state transition, enabling more frequent

jumps between local minima.

We accomplish hyperdynamics by utilizing the Langevin dynamics abstraction for

physical systems and crafting a special bias function, which we add to the potential energy

function to favor areas of transition, e.g., saddle points. The challenge of this method is to

define a computationally tractable and effective bias function without a priori knowledge

of the transition points in the potential.

In order to maintain representative sampling, the bias function need satisfy only one

constraint: that it is zero at all points of transition between states. In practice, however, it

is sufficient to approximate this constraint with a more local estimate of transition areas

defined by saddle points in the potential. This estimate can be described according to the

first and second derivatives of the potential. More formally, let g = ∇E(θ) and H be the

Hessian matrix with elements ∂2E(θ)/∂θiθj . Then the saddle points are those with

λ1 < 0 (4.24)

g1p = CT
1 g = 0 , (4.25)

where λ1 is the lowest eigenvalue of H and g1p is the projection of the lowest eigenvector

CT
1 of H onto the gradient. Voter (1997a) applies this definition of a saddle point to define

the bias function

Eb(θ) =
h

2

(
1 +

λ1

(λ2
1 + g2

1p/d
2)1/2

)
. (4.26)

The function is derived by assuming a sine wave potential with height h and period 2πd

and constructing a function to cancel it; the additive bias raises the value of the potential

to the transition points, h/2.

Adding the hyperdynamics bias function to the Langevin sampler (4.12) yields a new

stochastic dynamics equation
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θ̃i = θi +
ε2

2

∂(E + Eb)

∂θi
(θ) + ε ηi . (4.27)

Including the bias function in the Langevin equation requires computation of third order

derivatives, which directly could be very expensive. Voter (1997a), however, presents

numerical methods to estimate λ1 and g1p so that (4.27) can be computed entirely in

terms of first order derivatives. While this makes the computation more efficient, it is

still relatively expensive, requiring many evaluations of the likelihood. Fortunately, the

number of iterations needed to transition to a nearby saddle point is small; it is analogous

to the number of iterations required by the Langevin sampler to reach the bottom of a

local minimum. Figure 4.5 shows an example of how cycling Langevin dynamics with

hyperdynamics effectively transitions between local minima in Müller’s potential (4.13)

and biased potential.

By cycling the hyperdynamics sampler with the standard Langevin sampler, we accel-

erate the rate at which we can explore local minima in the potential energy function. This

is particularly true in cases where the Langevin sampler is trapped in a deep narrow re-

gions of the potential with little variation in sampling. When we switch to hyperdynamics

for even just a short number of iterations in this case, the minima is inverted just as steeply

and we move quickly to a nearby transition area. Furthermore, the parameters explored in

a path through the transition area exhibit the minimum amount of change in the potential

between states. In our problem of fitting 3-D structure models to an image, this means

the hyperdynamics accelerate exploration of parameters that exhibit the smallest amount

of change in the model scene affecting the posterior. As with covariance scaled MH, this

is most likely in the ambiguous direction of depth.

4.4 Results and Discussion

We evaluated our sampling strategy and models by inferring them on a set of 32 table

images. The edges in all the images were detected with the same parametrization, result-

ing in many edge points that could be considered noise, or in some cases, missing from

major portions of table structure. The fitting process for each image was initialized from
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a different random state drawn from our fairly uninformative prior.

We detected the edge points in the data images with a gradient-based Canny edge

detector Canny (1986). We further used non-maximal suppression and hysteresis in the

edge detector to aid in generating continuous sequences of strong edges in the image. The

detector is similar to the one described in Section 2.6.1, but for single 2-D images.

We cycled through each of the Langevin, covariance scaled Metropolis-Hastings and

hyperdynamics samplers five times, with most obtaining a good fit after just a couple of

cycles. The Langevin and Metropolis-Hastings samplers were run for 10K iterations dur-

ing each cycle, this was followed by 50 iterations of hyperdynamics. The hyperdynamics

sampler takes a significantly longer time for sample generation due to the complex numer-

ical approximations that must be calculated for the bias function. However, 50 iterations

was often enough to position the model parameters at a transition point so a new state

could be reached. Fig. 4.6 shows a sequence of random samples from the Langevin dy-

namics throughout the sampler cycling process.

As shown in Figures 4.7 and 4.8, we accurately fit most of the table and camera

models to the images. If we continue to run the sampler, the fits continue to improve

for all images. The image in the top left corner of Figure 4.7 is particularly interesting

because of the poor edge detection that occurred. We observe from this fit that even

though a substantial number of edge points are noise, nearly half the table surface edge

points are missing, and the back leg has no detection at all, we are still able to make a

somewhat accurate fit to this image.

As we stated in the introduction, our overall goal is to learn the form of general 3-

D structure models for objects. We believe that the novel inference process we have

presented in this paper is a good first step on a process to learning structure models. To

some extent we can already reason about the structure of tables; we have fit a highly

configurable model and can now consider the statistics of such a model after fitting it to

a collection of images. In Chapter 5 we do the same for other objects, in a less specified

way, and learn how to discriminate between various classes of structures that share parts

and appear similar.
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(a) (b) (c)

(d) (e)

Figure 4.6: From left-to-right and top-to-bottom, a sequence of inference for one table
image after each cycle of the samplers. The image is drawn randomly from the Langevin
sampler. Notice the extensive exploration of parameters affecting the depth of the model
being fit. This is due to the covariance scaled Metropolis-Hastings sampling and transition
accelerated hyperdynamics
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Figure 4.7: First 16 of 32 images of tables fit with our camera and object models. The fit
model is rendered in red and the detected edge points are shown in green
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Figure 4.8: Second 16 of 32 images of tables fit with our camera and object models. The
fit model is rendered in red and the detected edge points are shown in green
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CHAPTER 5

Learning Categories of Object Structure

5.1 Introduction

In this chapter we develop an approach to learn stochastic three-dimensional geometric

models of object categories from single view images. We continue the generative ap-

proach of previous chapters and build a statistical model that generates object categories,

instances and detected image features, such as edge points. Figure 5.1 illustrates the main

idea of our generative model. Exploiting such models for object recognition systems en-

ables going beyond simple labeling and opens up opportunities to reason about object

function and utility. In particular, we can understand how an object integrates into the

scene (perhaps it is an obstacle), how the form of a particular instance is related to others

in its category (perhaps it is exceptionally tall and narrow), and how categories themselves

are related.

Capturing the wide variation in both topology and geometry within object categories,

and finding good estimates for the underlying statistics, suggests a large scale learning

approach. We propose exploiting the growing number of labeled single-view images to

learn such models. While our approach is extendable to utilize multiple views of the same

object, large quantities of such data are rare. Moreover, the key issue we are interested in

is learning about category variation, not reconstructing shape for a few object instances.

For example, if we are limited to 100 training images, we would prefer to have 100 images

of different examples, rather than 10 views of 10 examples.

Representing, learning, and applying statistical geometric properties of objects is po-

tentially simpler in the context of 3-D models. In contrast, statistical models that encode

view-based appearance and part configuration statistics must deal with confounding in-

formation due to the imaging process. For example, right angles in 3-D can have a wide

variety of angles in the image plane. In this case the representations for structure and
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Figure 5.1: Summary of our generative approach to representing 3-D object category
models and instances. We begin by sampling an object category comprising a structure
topology and part statistics over relative size and position. From this we generate an
instance of an object category, such as a table, and capture an image of it under a model
of the camera. The image of the projected model block contours then generates edges as
they might be detected in image data.

pose variation is the same, implying that the represented geometry is less specific and less

informative. By comparison, structure variation encoded in 3-D models is simpler and

more precise because the models are solely linked to the object.

To deal with the effect of an unknown camera, we estimate the camera parameters

simultaneously while fitting the model hypothesis, similar to Chapter 4. A 3-D model

hypothesis is a relatively strong hint as to what the camera might be. Furthermore, we

make the observation that structure variation due to standard camera projection is quite

unlike typical category variation. Hence, in the context of a given object model hypothe-

sis, the fact that the camera is unknown is not a significant impediment, and much can be

estimated about the camera under that hypothesis.

We develop our approach with object models that are expressible as a spatially con-

tiguous assemblage of blocks. We also include in the model a prior on right angles be-

tween blocks. We further simplify matters by considering images where there are minimal

distracting features in the background. We experiment with images from five categories

of furniture objects. Within this domain, we are able to automatically learn topologies.

The models can then be used to identify object category in a recognition test using statis-

tical inference. Recognition of objects in clutter is likely effective with this approach, but

we have yet to integrate support for occlusion of object parts into our inference process.

We learn the parameters of each category model using Bayesian inference over multi-
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ple image examples for the category. Thus we have a number of parameters specifying the

category topology that apply to all images of objects from the category. As a side effect,

the inference process finds instance parameters that apply specifically to each object. For

example, all tables have legs and a top, but the proportions of the parts differ among the

instances. In addition, the camera parameters for each image are determined, as these are

simultaneously fit with the object models. The object and camera hypotheses are com-

bined with an imaging model to provide the image likelihood that drives the inference

process.

For learning we need to find parameters that give a high likelihood of the data from

multiple examples. Since we are searching for model topologies, we need to search

among models with varying dimension. For this we use the trans-dimensional sampling

framework of Green (1995, 2003), as was done in Chapters 2 and 3. We explore the pa-

rameter space of a particular dimension in a manner similar to Chapter 4, by combining

Metropolis-Hastings and stochastic dynamics MCMC sampling (Sokal, 1989; Neal, 1993;

Andrieu et al., 2001; Liu, 2001; Bishop, 2006). As developed below, these two classes of

samplers have complementary strengths for our problem, although for efficiency reasons

we do not follow exactly the same mix as Chapter 4. We continue, however, to arrange

the sampling so that the mixture mantains convergence to the posterior distribution. This

ensures that the space will be completely explored, given enough time.

5.1.1 Related work

Most recent work on learning representations for object categories has focused on view-

based appearance and part configuration statistics (Fergus et al., 2003; Fei-Fei et al., 2004;

Leibe et al., 2004; Sivic et al., 2005; Shotton et al., 2005; Crandall and Huttenlocher,

2006; Leordeanu et al., 2007; Opelt et al., 2008; Ferrari et al., 2009). These approaches

typically rely on effective interest point descriptors that are somewhat resilient to changes

in view and pose (Berg and Malik, 2001; Belongie and Malik, 2001; Lowe, 2004; Kadir

et al., 2004; Ferrari et al., 2008). A second force favoring learning 2-D representations

is the explosion of readily available images compared with that for 3-D structure, and

thus treating category learning as statistical pattern recognition is more convenient in the
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domain of 2-D images. However, some researchers have started imposing more projective

geometry into the spatial models. For example, Savarese and Fei-Fei (2007, 2008) build a

model where arranged parts are linked by a fundamental matrix. Their training process is

helped by multiple examples of the same objects, but notably they are able to use training

data with clutter. Their approach is different than ours in that models are built more

bottom up, and this process is somewhat reliant on the presence of surface textures. Our

work is driven by parametric parts that provide strong cues when they are appropriate. A

different strategy proposed by Hoiem et al. (2007) is to fit a deformable 3-D volume to

cars, driven largely by appearance cues mapped onto the model. Their choice of modeling

in 3-D simplifies a number of issues, and provides for more natural integration with work

in understanding scene geometry (Hoiem et al., 2006), as is the case for us. However, our

modeling approach is different in that we focus on learning topologies for assemblages

of parametrized parts, instead of working with deformation of a single structure. Our

interest in learning structure topologies also relates to recent work in learning abstract

topologies (Tenenbaum et al., 2006; Kemp and Tenenbaum, 2008) and structure models

for 2-D images of objects (Zhu et al., 2006; Zhu and Mumford, 2006) constrained by

grammar representations.

5.2 Our approach

From an image collection of an object category, we learn a three-dimensional structure

model that probabilistically describes the form and appearance of the category. We ac-

complish this by inferring instance parameters of object and camera models for each im-

age, and jointly learning across these a category-level organization of object parts (topol-

ogy) and their distributions. Since an object category typically has multiple, closely re-

lated structure topologies, e.g. chairs with and without armrests, we learn sub-categories

of structure. This enables us to capture variation within the 3-D structure of object cate-

gories and can be used to recognize or detect instances of our model in new images.

In our approach we present a generative model for the 3-D structure of an object, the

camera viewing it and the image captured (Figure 5.2). Our representation of an object
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Figure 5.2: Graphical model for the generative approach to images of objects from cate-
gories described by stochastic geometric models. The category level parameters are the
number of parts, n, their interconnections (topology), t, the structure statistics rs, and
the camera statistics, rc. Hyperparameters for category level parameters are omitted for
clarity. A sample of category level parameters provides a statistical model for a given
category, which is then sampled for the camera and object structure values cd and sd, op-
tionally selected from a cluster within the category by zd. cd and sd yield a distribution
over image features xd.

comprises a set of 3-D parts linked together by a learned topology. The parts are geo-

metric primitives representing unit pieces of structure and are generated from distribution

parameters specific to the object category. The topology of a category characterizes the

spatial relationship between parts, which together form the 3-D object model. To accom-

modate structural variation within an object category, we formulate sub-categories that

give rise to object instances which are structurally similar but have some small differ-

ences in topology. We further represent the camera capturing the view of an object into

an image, enabling an understanding of imaged objects under arbitrary views. Finally,

conditioned on the object and camera models, we model independently detected image

features, such as edge and surface points, as generated by object parts projected under the

camera model. By combining the object, camera and image models, we have a process to

generate images of objects that we can use for model inference.

Following a Bayesian strategy, we reverse our forward model and, from detected fea-

tures in an image, simultaneously fit the most likely 3-D object model and camera to have
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generated them. Using the inferred object and camera for a set of images in a category,

we learn the form of the category topology and part distributions. In this way we have

two types of parameters in our model: per image and per category. We infer both types

of parameters simultaneously from a set of training images of an object category. For

recognition or detection in a new image, we need only infer the instance parameters.

In describing our model and its process of inference, we first introduce some notation

and parameter descriptions. For a single image, we label the corresponding set of struc-

ture parts in our object model s and the camera capturing it c. The topology shared across

multiple images generated by the same object category is given by t. We label the simi-

larly shared cluster and distribution parameters for structure sub-categories rs and camera

distribution rc. The number of parts in the object model is unknown a priori, making the

model parameter set variably sized. For an object with M sub-categories, we denote the

number of parts in each object model as n = n1, . . . , nM . Since the dimension of our

model depends upon the number of parts, we denote the set of model parameters for one

image

θ(n) = (c, s, t, rc, rs,n) . (5.1)

The camera parameters for an image are shared across the sub-categories. We could

learn sub-category camera parameters, but multiple structure motifs of an object typically

are independent of how they are viewed, e.g., chairs with armrests are similarly viewed as

those without. So we label the parameters for a single image under the mth sub-category

as a subset of θ(n),

θ(nm)
m = (c, sm, tm, rc, rsm, nm) , (5.2)

which has a shared camera and generating distribution.

Given a set of D images containing examples of an object category, our goal is to

learn the model Θ(n) generating them from detected features sets X = x1, . . . ,xD. In

addition to category-level parameters shared across instances, Θ(n) comprises camera

models C = c1, . . . , cD and structure part parameters Sm = sm1, . . . , smD for the mth
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sub-category generating each image. Our posterior over the parameters then takes the

form

p
(
Θ(n) |X

)
= p

(
X,Θ(n)

)
/

∫
p
(
X,Θ(n)

)
dΘ(n) . (5.3)

The integral behaves as a constant and is not computed; it is canceled out during the in-

ference process, as we show. The joint density function over the features and parameters,

however, is the core of our inference and requires further description.

Since instance parameters C and S are bound to the feature data X in the image set,

we separate the joint density into a likelihood and prior

p
(
X,Θ(n)

)
= p(n)(X,C,S, t, rc, rs,n) (5.4)

= p(n)(X,C,S | t, rc, rs) p
(n)(t, rc, rs,n) , (5.5)

where we use the notation p(n)(·) for a density function corresponding to n parts. Con-

ditioned on the category parameters, we assume that the D sets of image features and

instance parameters are independent, giving

p(n)(X,C,S | t, rc, rs) =
D∏
d=1

p(n)(xd, cd, sd | t, rc, rs) . (5.6)

This seems a fairly safe assumption; if two images contain examples of an object, then

their particular appearances are typically independent. An exception to this assumption,

however, includes inadequately modeling sub-category structure variation within a class

of objects.

From the independent sets of features and instance parameters in (5.6), we develop a

likelihood clustering model over sub-categories of object structure. The feature data and

structure parameters are generated by a sub-category cluster with weights and distribution

defined by rs = (π,µs,Σs). As previously mentioned, the camera is shared across

clusters, and drawn from a distribution defined by rc = (µc,Σc). We formalize the

likelihood of an object, camera, and image features under M clusters as
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p(n)(xd, cd, sd | t, rc, rs)

=
M∑
m=1

πm p(nm)(xd | cd, smd)︸ ︷︷ ︸
Image

p(cd |µc,Σc)︸ ︷︷ ︸
Camera

p(nm)(smd | tm,µsm,Σsm)︸ ︷︷ ︸
Object

.
(5.7)

We arrive at equation (5.7) by introducing a binary assignment vector z for each image

feature set, such that zm = 1 if the mth cluster generated it and 0 otherwise. The cluster

weights are then given by πm = p(zm = 1) . By assuming the feature set and instance

parameters to be conditionally independent given the object sub-category, we formally

derive the likelihood clustering in (5.7) as follows

p(n)(x, c, s | t, rc, rs)

=
∑
z

p(n)(x, c, s, z | t, rc, rs) (5.8)

=
∑
z

M∏
m=1

p(n)(x, c, sm, zm | t, rc, rs)
zm (5.9)

=
M∑
m=1

p (zm=1 | πm) p(nm)(x | c, sm, tm) p(c | rc) p
(nm)(sm | tm, rsm) . (5.10)

In this way, we define each independent component of our likelihood for a single image.

For the prior probability distribution over model parameters, we assume category pa-

rameter independence, with the clustered topologies conditionally independent given the

number of parts in the model. The prior in (5.5) becomes

p(n)(t, rc, rs,n) = p(rc)
M∏
m=1

p(nm)(tm |nm) p(nm)(rsm) p(nm) . (5.11)

For the category parameters in the camera and structure models, rc and rs, we use Gaus-

sian statistics with weak Gamma priors that are empirically chosen. We set the number

of parts in the object sub-categories, n, to be geometrically distributed. We set the prior

over edges in the topology given n to be uniform.
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The joint density over image features and model parameters created from the likeli-

hood (5.6) and prior (5.11) describes our generative model and Bayesian approach for

learning 3-D object structure in images. Figure 5.2 shows the graphical version of this

model and summarizes its parameter relationships. In the next few sections, we detail the

object, camera, and image components of this model.

5.2.1 Object model

We model object structure as a set of connected three-dimensional block constructs rep-

resenting object parts. We account for symmetric structure in an object category, e.g.,

legs of a table or chair, by introducing compound block constructs. We define two con-

structs for symmetrically aligned pairs (2) or quartets (4) of blocks. This simplification

facilitates learning general category structure while not introducing unnecessary infer-

ence overhead. Unless otherwise specified, we will use blocks to specify both simple and

compound blocks, as they are handled similarly.

The connections between blocks are made at a point on adjacent, parallel faces. We

consider the organization of these connections as a graph defining the structural topology

of an object category, where the nodes in the graph represent structural parts and the

edges give the connections. We further treat the edges as directed, inducing attachment

dependence among parts.

Each block has three internal parameters representing its width, height, and length.

Blocks representing symmetric pairs or quartets have one or two additional parameters

defining the relative positioning of their sub-blocks. Blocks potentially have two external

attachment parameters u, v for each face; we allow one other block attachment per face.

We further constrain blocks to attach to at most one other block. giving a directed tree

for the topology and enabling conditional independence among attachments. Note that

blocks can be visually ”attached” to additional blocks that they abut, but representing

them as attachments makes the model more complex and is not necessary.

We position the connected blocks in an object coordinate system defined by a point

po ∈ R3 on one of the blocks. Since we constrain the blocks to be connected at right

angles on parallel faces, the position of other blocks within the object coordinate system
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is entirely defined by po and the attachments points between blocks. Despite its simplicity,

this model can approximate a surprising range of man made objects.

Combined with a y-axis rotation angle, ϕ, about its position, our structure model is

sufficiently configurable to approximate the form of several furniture categories. For a

set of n connected blocks of the form b = (w, h, l, u1, v1, . . .), we denote the object

structure model by

s = (po, ϕ, b1, . . . ,bn) . (5.12)

The object structure is assumed Gaussian distributed according to µs,Σs in the likeli-

hood (5.7). Since the instance parameters in the object model are conditionally indepen-

dent given the category, the covariance matrix is diagonal.

As previously described, the category topology is a set of directed edges in a graph

between blocks at their attachment points. For a block bi attaching to bj on faces defined

by the kth size parameter, the topology edge set is defined as

t =
(
i, j, k : bi

k←− bj

)
. (5.13)

5.2.2 Camera model

Since our approach for representing the camera capturing an image in this chapter is

related to Chapter 4, we use the same model for a camera as in Section 4.2.2. We continue

to constrain the camera to always look at the origin of world coordinates and specify its

zenith rotation angle about the x-axis with ϑ ∈ [−π/2, π/2]. We also parameterize the

camera focal length with f > 0 and its scale of objects in the world with s > 0. Figure 4.2

illustrates the details of how our constrained camera interacts with an object in the scene

to provide arbitrary views. Similar to Chapter 4, we specify an instance of the camera

with c = (ϑ, f, s).

We pursue learning the statistics over camera configurations within an object cate-

gory. The statistics effectively describes the likely views a particular category is imaged

under. For example, tables are usually seen from the top and not the bottom. Thus, as in
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the object model, the camera instance parameters in (5.7) are modeled as Gaussian with

category parameters µc,Σc.

5.2.3 Image model

We expand the edge-focused image model from Chapter 4 and represent an image as a

collection of detected feature sets that are statistically generated by an instance of our ob-

ject and camera. We model each of the image feature sets as arising from a corresponding

feature generator that depends on projected object information. For example, we generate

edge points from projected object contours and image foreground from colored surface

points. Figure 5.3 illustrates this representation of detected image features. Our likeli-

hood over image feature sets, conditioned on an object and camera model, captures the

process by which features are generated and measures how well a model explains their

observations.

Given an object and camera, a feature generator stochastically produces the response

of a detector at every pixel of an image. Thus each pixel has a non-zero probability of

a feature being generated over it by the model, which we assume is independent from

all other pixels’ chances, given the model. Our image model is then per pixel, and we

compute the likelihood of a feature detector’s response per pixel given object and camera

information.

We formally define the likelihood of image feature sets as a product over per pixel

observations. For the dth image with Nd pixels, we assume independence, as previously

mentioned, between per pixel feature responses conditioned on the model. We further

assume independence among the G different types of generated features detectable in the

image. Given the detected feature sets xd = xd1, . . . ,xdG in the dth, we expand the image

component of equation (5.7) to

p(nm)(xd | cd, smd, tm) =
G∏
g=1

Nd∏
i=1

f
(nm)
θg (xdgi) . (5.14)

The function f (nm)
θg (·) measures the likelihood of a feature generator producing the re-

sponse of a detector at each pixel using our object and camera models.
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Figure 5.3: Example of the generative image model for detected features. The left side of
the figure gives a rendering of the object and camera models fit to the image on the right
side. The rightward arrows show the process of statistical generation of image features.
The leftward arrows are feature detection in the image data.
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It may not necessarily be the case that the G detected feature sets are independent.

As in the pixel independence assumption, however, conditioning on the model provides a

way to lessen this dependency and simplify our model. We further observe that detected

features of different types do not always have strong dependencies. This is particularly

true for edge and surface points. Since edge points are located in surface regions of high

color transition, and most surface color is not in these regions, it is unlikely a strong

dependency exists between a particular surface point and an edge detection. For these

reasons we believe it is reasonable to assume such independence.

Using our approach to the image likelihood, we can model many different types de-

tectable features. We currently model edge points and image foreground, as they are

straightforward to extract, provide a good representation of object part structure and lo-

cation, and are readily modeled by our object representation. As Figure 5.3 shows, the

projected object contours model detected edge points, and surface points represent the

detected image foreground. Our foreground representation is essentially a binary color

indicating whether a pixel contains a surface point in the foreground. We could easily

extend this to account for more color in the foreground surface points and add another

feature generator to the image model. We first describe how we model edge point gener-

ation followed by surface point generation.

Edge point generator

Image edge points occur at pixel locations where there is a large change in color

relative to nearby pixels. We model edge point location and orientation as generated

from projected 3-D contours of our object model. The object contours arise where two

or more surfaces meet with different orientation, each having potentially different color

or shading. The projected object contour points are positioned in a hypothesized model

image and contain orientation information. This representation is consistent with edges

detected using gradient-based methods that give edge point pixel locations and a gradient

vector indicating edge orientation.

An edge detector gives a response at each pixel and indicates whether an it contains an

edge point. Since the feature generator likelihood in (5.14) is computed over all detection
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responses in an image, we define the edge generator likelihood as

N∏
i=1

fθ(xi) =
N∏
i=1

eθ(xi)
Ei · e′θ(xi)

(1−Ei) , (5.15)

where the probability density function eθ(·) gives the likelihood of a detected edge point

at the ith pixel, and e′θ(·) is the density for pixel locations not containing an edge point.

The two density functions are selected per pixel by an indicator Ei, which is 1 if the pixel

is an edge point and 0 otherwise. We have suppressed the image and generator indices

d, g and sub-density index (nm) for clarity.

The edge point density eθ(·) is defined over detected edges that have been generated

by projected contour points of the object model. We define the ith edge point gener-

ated from the j th model point to have some Gaussian distributed displacement dij in the

perpendicular direction of the projected model contour. We further define the gradient

direction of the generated edge point to have Gaussian error in its angle difference φij

with the perpendicular direction of the projected contour. Thus, we define the likelihood

to be the product of two Gaussians, assuming independence. Let mj be the known model

point to have generated xi, then

eθ(xi) = ce N (dij; 0, σd) N (φij; 0, σφ) (5.16)

where the perpendicular distance between xi andmj and angular difference between edge

point gradient gi and model contour perpendicular vj are defined as in Chapter 4

dij = ‖xi −mj ‖ (5.17)

φij = cos−1

(
gT
i vj

‖gi‖ ‖vj‖

)
. (5.18)

The range of dij is ≥ 0, and the angle φij is in [0, 1].

Pixels not containing an edge point still give an edge detection response from a nearby

projected model contour. Suppose we know the projected model point generating each of
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these non-edge responses. Then we define the probability of an edge detection response

xi that does not contain an edge point as

e′θ(xi) = 1−
∫

x′i

eθ(x) dx , (5.19)

where x′i is the space of all edge detection responses at the same pixel location as xi, but

that contain an edge point. That is, we define e′θ(xi) as the complement of the probability

a model point generates any detection response containing an edge point at the ith pixel.

Unfortunately, during model inference with actual detected edge points in an image,

we do not know the correspondence between hypothesized model points and the edge

detection responses xi. We could search for the most likely correspondence linking edge

detection responses and model points, but there are exponentially many of them. There-

fore, we build uncertainty into the point correspondences by redefining the edge point

generator density over several candidate model points for each edge point and develop an

efficient approximation of its most likely correspondence.

We model an edge point with no correspondence information as generated by one

of several candidate model points, and assume that each model point generates at most

one edge point. If we detect an edge point at the ith pixel of an image, it is modeled as

being generated by one of Ki projected model contour points mk that are nearby. We

simplify computing nearby point correspondences by linking points on the hypothesized

model contour to their closest image edge point in the direction of the edge gradient.

Creating this linkage based on the detected edge gradient instead of the model contour

perpendicular has some the practical advantages, including being able to quickly find the

candidate model points. This is accomplished as follows.

For each image edge point, we compute the distance along the edge gradient to points

on the projected model contours. Under the assumption that a model point generates at

most one edge point, we link a model point to its closest edge point using the computed

distances. Each edge point will then have a disjoint set of model points it is linked with.

Figure 5.4 illustrates a simple example of this process. The model point set can be empty,

however, due to no points along the edge gradient or the distance being greater than a
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Figure 5.4: Example point correspondence resolution linking three projected model con-
tours (solid) with two edges (dashed) of an image object (shaded). For each edge point, a
set of nearby model points in the gradient direction is found and used in the edge density
function (5.20). All points in (a) are co-linear and parallel to the image gradients at x1

and x2. Distances between edge points and model points along the gradient are computed
in (b); the shaded distances, δ12<δ11<δ23, are the smallest and labeled in (a). Model to
edge point linkages are then made in (c) based on the closest edge point. Final linking of
nearby model point sets to each edge point is summarized in (d).

threshold. In this case, the edge point is not linked to any model points and is considered

noise.

Given a set of Ki linked model points, we redefine the density for an edge point xi in

our generative image model. Since we do not know which of the model points actually

generated the edge point, we average across their Gaussian response of (5.16) with equal

weights. The edge density function then becomes

ẽθ(xi) =
1

Ki

Ki∑
k=1

N
(
d̃ik; 0, σd

)
N (φik; 0, σφ) , (5.20)

where the perpendicular distance d̃ik from a model point is also redefined as



131

23d
∼

x

∼

2

m3

g2 δ23

φ23

v3

x2

Figure 5.5: Distance and angle representation of d̃23 and φ23 for the edge point x2 and
model point m3 in Figure 5.4. The point x̃2 is the generative approximation of x2 that is
perpendicular to both the projected model contour and gradient g2.

d̃ik = ‖ x̃i −mk ‖ . (5.21)

The point x̃i is the generative approximation of xi that is perpendicular to both the model

contour at mk and the gradient gi. If the edge point was found to be noise, however, due

to no nearby model points, a constant minimum likelihood value, enoise, is used instead.

Figure 5.5 shows the details of this calculation for one of the example edge points in

Figure 5.4.

In addition to redefining the edge point density using point correspondence estimation,

we approximate the probability of not detecting an edge point at a particular pixel (5.19)

with constants. We use a pair of probability constants for detection responses that are

missing an edge point or are image background with no edge point expected. Pixels not

containing an edge point, but that have the same image location as a projected model

point, contribute a constant factor, emiss, to the likelihood. However, only the Ki− 1

furthest model points from the ith non-edge pixel contribute this constant; one of the

model contours is assumed to have generated an actual edge point. Model points not

linked to any edge point that have a detection response of no edge also contribute this

constant. For all other pixel locations with no detected edge points, we factor in a constant

background probability, ebg.



132

We combine the approximations of the edge and no-edge density functions to redefine

the likelihood for the edge point generator. Since detections not containing an edge point

have constant probability, it is unnecessary to know which of the model points are missing

an edge point. We only need to know how many there are, which we can easily compute

by adding the number of model points not linked to an edge point with
∑N

i=1(Ki − 1)Ei .

This enables us to approximate the generator likelihood (5.15) with

N∏
i=1

fθ(xi) ≈

{
N∏
i=1

ẽθ(xi)
Ei

}
e
Nbg
bg eNmiss

miss . (5.22)

where Nbg and Nmiss are the number of background and missing detection responses in

the image, and Nbg + Nmiss =
∑N

i=1 1− Ei. This is a reformulation of the edge gen-

erator likelihood (4.5), where we introduced binary weights in a summation over edge

detection likelihoods that select the type of detection at each pixel. In the generator like-

lihood (5.22), we instead use a product over pixel detection likelihoods and summation

over binary exponents to select the detection type. We can then estimate, for example,

the number of background pixels or the number of missed edge detections, and directly

compute the probability of those pixels.

Our approach has some similarities to standard edge matching (Borgefors, 1988; Hut-

tenlocher et al., 1993), but we explain the edge points as the result of a generative statis-

tical process that accounts for both distance and gradient direction. Using the Hausdorff

distance for edges in our approach, for example, would preclude our ability to link edge

points to projected model contours for likelihood computation, since no correspondences

would be computed.

While the assumption that a model point can be assigned to at most one image edge

point may seem arbitrary, we have experimented with other assignment alternatives and

found it to give the best results. We have also experimented with different weightings in

the average computed over model points in (5.20) and found uniform weights to work the

best in the most cases.

Implementation detail: Much of the model and edge point linkage is easily pre-

computed at program initialization for the input images. After detecting the edge points
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in each image, we create a correspondence grid of potential model point distances and

gradient angles with the same dimensions and indexing as the image. The kth index in

the grid stores the computed dik and discretized set of φik for each of the edge points xi

whose gradient traces through the kth point in the grid. A discretized set of φik is com-

puted because the orientation of the model contour is not yet known. During learning

and recognition, when the model contours are computed and projected, we look-up the

distance and gradient angle for each of the model points in the precomputed table.

Surface point generator

Surface points are the projected points of viewable surfaces in our object model and

represent detected image foreground. We detect foreground pixels by applying k-means

clustering on pixel intensities. Setting k = 2 works well as our training images were

selected with the objects on a uniform background to minimize clutter and emphasize

structure learning. Figure 5.3 shows an example foreground detection for an image.

Similar to the case of edge points, the surface detector gives a response at each pixel

location. We also have density functions for surface and non-surface points. Thus, we

define the surface generator likelihood as

N∏
i=1

fθg(xgi) =
N∏
i=1

sθ(xi)
Si · s′θ(xi)

(1−Si). (5.23)

The per pixel indicator Si is 1 if the pixel contains a detected surface point in the fore-

ground, otherwise it is 0 and considered part of the background.

We define the density functions in terms of constant likelihoods for surface and non-

surface points. The decision for what type of constant to use is based on comparing the

surface point detection response at a pixel in the observed image and the corresponding

projected object model surface point in the same pixel location of a hypothesized model

image.

We define the density function for detected surface points with two constants for fore-

ground and noise. If the pixel contains a detected surface point and shares a location with

a projected model surface point, then we say it is part of the foreground and contributes
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sfg. If the detected surface point has no projected model surface point over it, we label it

as noise and factor in snoise.

We define the density function for detected non-surface points also with two constants,

but for background and missing points. If the pixel does not contain detected surface point

and has no projected model surface points in the hypothesized image, then we say it is

part of the background and contributes sbg. If the pixel again does not contain a detected

surface point, but has a projected model surface point over it in the hypothesized image,

we label it as missing a surface point in the observed image with factor in smiss. Thus, the

surface point generator likelihood expands to

N∏
i=1

fθ(xi) = s
Nfg
fg s

Nbg
bg sNnoise

noise sNmiss
miss . (5.24)

where Nfg +Nbg +Nnoise +Nmiss = N .

5.3 Learning

To learn a category model, we sample the posterior, p
(
Θ(n) |X

)
∝ p

(
X,Θ(n)

)
, to find

good parameters shared by images of multiple object examples from the category. Given

enough iterations, a good sampler converges to the target distribution and an optimal

value would be readily discovered in the process. However, our posterior distribution is

highly convoluted with many sharp, narrow ridges for close fits to the edge points and

foreground. In our domain, as in many similar problems, standard sampling techniques

tend to get trapped in these local extrema for long periods of time. Our strategy for infer-

ence is to combine a mixture of sampling techniques with different strengths in exploring

the posterior distribution while still maintaining convergence conditions.

Our sampling space is over all category and instance parameters for a set of input

images. We denote the space over an instance of the camera and object models with n

parts as C × S(n). Let T(n) be the space over all topologies and R(n)
c × R(n)

s over all

category statistics. The complete sampling space with m subcategories and D instances

is then defined as
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Ω =
⋃

n∈Nm
CD × S(n)D × T(n) × R(n)

c × R(n)
s × n , (5.25)

Our goal is to sample the posterior with Θ(n) ∈ Ω such that we find the set of parameters

that maximizes it.

We combine several sampler transition kernels to effectively explore the parameter

space. Since the number of parameters in the sampling space is unknown, some of the

transitions must change the model dimensions. To this end, we build a trans-dimensional

kernel in the Metropolis-Hastings framework to explore the space of category topologies.

For parameter changes within a topology, we follow the strategy of Chapter 4 and apply

both standard Metropolis-Hastings sampling and stochastic dynamics. Although the latter

reduces random walk behavior of the sampler, it introduces additional computation in

gradient calculation, which we estimate with numerical differentiation. Moreover, the

Hyperdynamics sampler we used in Chapter 4 requires many estimations of the gradient

to generate a sample from the biased energy function. Compounding the complexity of

numerical gradient estimation is the fact that our parameter space is much larger than

the model in Chapter 4, i.e. the object model here has an unknown number of blocks.

For these reasons we pursue an alternative stochastic dynamics algorithm that does not

require as much numerical differentiation per sample. However, we continue following

the general strategy of mixing Metropolis-Hastings with stochastic dynamics. Our hybrid

kernel then cycles between a mixture of these transitions while maintaining the posterior

as invariant (Tierney, 1994).

5.3.1 Sampling within topology

To sample instance and category parameters within a particular object topology, we fol-

low a hybrid transition kernel comprising the Metropolis-Hastings (MH) and stochastic

dynamics algorithms. This enables efficient exploration of the complicated, multi-modal

posterior distribution. In our experience, MH sampling enables large jumps between

many modes of the posterior; stochastic dynamics excels at following tight ridges in

highly correlated regions of parameter space that might otherwise cause high rejection
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rates under MH. We describe our approach for each algorithm in the following.

Metropolis-Hastings

The Metropolis-Hastings algorithm is an MCMC sampling technique to generate un-

biased and representative samples from a target distribution (Metropolis et al., 1953; Hast-

ings, 1970; Neal, 1993; Forsyth et al., 2001; Bishop, 2006). The central concept of the

algorithm is to propose samples from a distribution q(θ̃ |θ), which can be easily sampled,

and accept or reject the samples with probability

α
(
θ̃(n)

)
= min

{
1,
p(θ̃(n) |X) q(θ(n) | θ̃(n))

p(θ(n) |X) q(θ̃(n) |θ(n))

}
, (5.26)

where we have sampled an independent subset of model parameters in Θ(n), such as a set

of instance parameters.

We constructed several such proposal distributions, or diffusion moves, that modify

the instance and category parameters and diffuse across the parameter space. We found

a multivariate Gaussian with covariance values on the diagonal to be a good proposal

distribution for the instance parameters. Proposals for block size changes are done in one

of two ways: scaling or shifting attached blocks. We found that both are useful for good

exploration of the object structure parameter space. Category parameters were sampled

by making proposals from the Gamma priors.

Stochastic dynamics

The MH diffusion moves exhibit a random walk behavior and can take extended pe-

riods of time with many rejections to converge and properly mix well in regions of high

correlation in the target distribution. As an alternative, we occasionally follow a hybrid

Markov chain based on stochastic dynamics (Neal, 1993; Bishop, 2006). However, rather

than rely upon the combination of Langevin and Hyperdynamics from Chapter 4, we use

the Verlet integration algorithm (Verlet, 1967, 1968), commonly referred to as the leap-

frog algorithm. The primary reason for this switch is to balance the trade-off between

good mixing and computational complexity.
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As we have shown, cycling Langevin and Hyperdynamics samplers provide an excel-

lent means to transition between regions of high probability in our posterior; the Langevin

dynamics excel at rapidly moving to areas of high probability, and Hyperdynamics en-

ables transitions to saddle points between these areas. Unfortunately, the computational

burden of Hyperdynamics is too high for practically fitting category models to a set of

images containing objects in an category. We observe that solely following Langevin

dynamics focuses the sampler too much on regions of high probability (Figure 4.3) for

long sampling runs. Thus we use another dynamics algorithm, Verlet (1967, 1968), that

balances the traits of Langevin and Hyperdynamics, as we later illustrate in Figures 5.6

and 5.7.

We use ideas from molecular dynamics and simulate a physical system by represent-

ing our model parameters as a position in phase space with an introduced and hypothetical

momentum, r, under an energy function involving our posterior joint density. The dynam-

ics in the system generate representative samples while reducing the random walk effect

and drive the integration over phase space.

We define a potential energy over position from the joint density function (5.5), and a

kinetic energy for the introduced momentum as

E(n)(θ) = − log p(n)(X, θ) (5.27)

K(n)(r) =
1

2

N(n)∑
i=1

r2
i . (5.28)

The total energy in phase space is then given by the Hamiltonian

H(n)(θ, r) = E(n)(θ) +K(n)(r) , (5.29)

which we use in the canonical distribution over position and momentum in phase space,

p(n)(θ, r) = Z−1
H exp (−H (θ, r)). Finally, integrating the canonical distribution is ac-

complished by following the Hamiltonian dynamics over time τ ,
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dθi
dτ

= ri ,
dri
dτ

= −∂E
∂θi

. (5.30)

Integrating the dynamics exactly conserves total energy and volume in phase space,

leaving the canonical distribution invariant (Neal, 1993). To actually follow the dynamics

and generate samples from phase space, we discretize with the Verlet, or leap frog, algo-

rithm, where we alternate updating the momenta and position after every half time step.

For a small step-size, ε, we update according to

r̃i (τ + ε/2) = ri(τ)− ε

2

∂E (θi(τ))

∂θi
(5.31)

θ̃i(τ + ε) = θi(τ) + ε r̃i(τ + ε/2) (5.32)

We further introduce a stochastic transitions after each step to ergodically sample

from the from the canonical distribution in states of slightly different total energy. To

accomplish this we use the stochastic transitions

r̃i = α ri + (1− α2)1/2 ηi , (5.33)

where ηi is drawn from a standard normal. We choose α close to one to maintain nearly

constant energy, enabling a transition back to Metropolis-Hastings sampling. In Fig-

ures 5.6 and 5.7 we show the effects of varying the values of α and ε in this algorithm

on Müller’s potential (Müller, 1980), which was defined in (4.13) of Section 4.3.1. We

observe that choosing values of α close to one and relatively large values of ε reduces the

amount of resistance in the dynamics and enables good mixing. Although there is some

bias introduced in this hybrid approach, we are primarily interested in MAP estimation

and have found it to work well in practice. The necessary derivative calculations of (5.5)

are approximated using numerical differentiation.



139

(a) α = 0.85, ε = 0.01 (b) α = 0.95, ε = 0.01

(c) α = 0.975, ε = 0.01 (d) α = 0.98, ε = 0.01

Figure 5.6: Effects of varying α during Verlet dynamics sampling on Müller poten-
tial (4.13) for 1000 iterations. As α approaches 1, the amount of resistance, or drag,
in the sampler reduces and the transition rate is between states is increased.
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(a) α = 0.975, ε = 0.0025 (b) α = 0.975, ε = 0.003

(c) α = 0.975, ε = 0.0075 (d) α = 0.975, ε = 0.0095

Figure 5.7: Effects of varying ε during Verlet dynamics sampling on Müller poten-
tial (4.13) for 1000 iterations. For small ε (a), the sampling step size is decreased and
momentum rapidly decreases, leaving the sampler in a single state. As ε increases, more
of the sampling space is explored before momentum is lost.
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5.3.2 Sampling topologies

For changes to the object topology, we add or remove blocks by following the trans-

dimensional sampling technique outlined by Green (1995) and refer to these changes as

jump moves. For example, in the case of a block birth in the model, we modify the MH

acceptance probability to

α
(
θ̃(n+1)

)
= min

{
1,

p(θ̃(n+1) |X)

p(θ(n) |X) q(b̃, t̃)

rd
rb

∣∣∣∣∣ ∂(θ̃(n+1))

∂(θ(n), b̃, t̃)

∣∣∣∣∣
}

(5.34)

The proposal distribution generates a new block and attachment edge in the topology that

are directly used in the proposed object model. Hence, the change of variable factor in

the Jacobian reduces to 1. The probability of selecting a birth move versus a death move

is given by the ratio of rd/rb, which we have also defined to be 1. The complimentary

block death move is similar with the inverse ratio of posterior and proposal distributions.

In order to obtain good mixing of the jump moves in our trans-dimensional sampler,

we additionally define split and merge moves. These are essential moves in our case

because the sampler often generates blocks with strong partial fits and proposing split-

ting them is often accepted. The acceptance probability for merge/split is the same as

birth/death; we use parameters from a proposed block to deterministically split a block

already in the model, with an analogous move for the merge.

5.4 Results

We evaluated our model and its inference with image sets of furniture categories, in-

cluding tables, chairs, sofas, footstools, and desks. We have 30 images in each category

containing a single arbitrary view of the object instance. Although our image model repre-

sents detected feature noise, we selected images that have the furniture object prominently

in the foreground. This enables focusing on evaluating how well we learn 3-D structure

models of objects.

Inference of the object and camera instances was done on detected edge and surface
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points in the images. We applied a Canny-based detector for the edges in each image,

using the same parametrization each time. Thus, the images contain some edge points

considered noise or that are missing from obvious contours. To extract the foreground, we

applied a dynamic-threshold discovered in each image with a k-means algorithm. Since

the furniture objects in the images primarily occupy the image foreground, the detection

is quite effective. Figure 5.3 shows examples of detected edges and foreground.

We learned the object structure for each category over a 15-image subset of our data

for training purposes. We initialized each run of the sampler with a random draw of the

category and instance parameters. This is accomplished by first sampling the prior for

the object position, rotation and camera view; initially there are no structural elements

in the model. We then sample the likelihoods for the instance parameters. The trans-

dimensional moves in the sampler iteratively propose adding and removing object con-

structs to the model. Figure 5.9c illustrates which sampler moves are accepted and when

by plotting the potential energy for each accepted move during 2K sampler iterations of

the chair category parameters. Similarly, Figures 5.9a-b plot the potential energy for 2

of the 15 chair instances while they are simultaneously fit with the category parameters

in Figure 5.9c. The mixture of moves in the sampler was 1-to-1 for jump and diffusion

and very infrequently performing a stochastic dynamics chain. Figures 5.11, 5.12, 5.13

show examples of learned furniture categories and their instances to images after 100K

iterations. We observe that the topology of the object structure is quickly established

after roughly 10K iterations, this can be seen in Figure 5.8, which shows the simulta-

neous inference of two table instances through roughly 10K iterations. In addition to a

good topology, we also learn the category structure statistics, which we have rendered

using random category parameter samples in Figure 5.10. Finally, since the variation of

structure within each of our object categories is quite small, we found that using a single

cluster generally has the same result as learning multiple clusters.

We tested the recognition ability of the learned models on a held out 15-image sub-

set of our data for each category. For each image, we drew a random sample from the

category statistics and a topology and began the diffusion sampling process to fit it. The

best overall fit according to the unnormalized joint density (5.5) is declared the predicted
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Figure 5.8: From left to right, successive random samples from 2 of 15 table instances,
each after 2K iterations of model inference. The category topology and statistics are
learned simultaneously from the set of images; the form of the structure is shared across
instances.
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(a) Instance 2

(b) Instance 7

(c) Category

Figure 5.9: Potential energy of accepted jump and diffusion moves during inference of
the chair category and instance parameters after 2K iterations. (c) potential energy for
each accepted category parameter move. (a)-(b) potential energy for 2 of the 15 chair
instances while they are simultaneously fit with the category parameters in (c).
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Figure 5.10: Generated samples of tables and chairs from the learned structure topol-
ogy and statistical category parameters. The rotation angle for each category was fixed
and 100 samples of instances from the table and chair categories were drawn from the
topology and statistics.

Actual
Predicted Table Chair Footstool Sofa Desk

Table 10 5 4 0 2
Chair 5 9 10 5 3
Footstool 0 0 1 3 1
Sofa 0 1 0 7 3
Desk 0 0 0 0 6

Table 5.1: Confusion matrix for object category recognition

category. The confusion matrix shown in Table 5.1 shows mixed results. Overall, recog-

nition is substantively better than change (20%), but we expect that much better results

are possible with our approach, and consider the current ones preliminary. We observe

from these results that the learned chair topology shares much of its structure with the

other categories and causes the most confusion. Estimating a normalization constant for

the joint density under each category should help to improve these results by providing a

more accurate comparison of category probability. We have yet to extensively experiment

with larger training data sets, clustering category structure, and long run times to get bet-

ter structure fits in the difficult training examples, each of which could help resolve this

confusion.
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Figure 5.11: Learning the structure of a table object. Model fitting is done jointly across
fifteen training images using sets of contiguous blocks. The category topology and statis-
tics are shared across all images, whereas the instance parameters (camera, block position
and size) were fit across the exemplars. The location of the edge points in the image
(shown in green) is only softly fit to the model edges (shown in red) to account for the
deformation from a block (note the legs of some of the tables). While the quality of in-
dividual fits naturally varies across examples (these are relatively good results), in both
cases the system learned, from the same starting point, a recognizable topology for the
category represented by the collections of instances.
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Figure 5.12: Learning the structure of a chair object. Model fitting is done jointly for the
fifteen images in the training set using contiguous blocks to represent the structure. The
fits for the training examples is shown by the blocks drawn in red. Detected edge points
are shown in green.
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Figure 5.13: Learning the structure of footstools, sofas, and desks. Sets of contiguous
blocks were fit across each image data set. Model fitting is done jointly for the fifteen
images of each set. The fits for the training examples is shown by the blocks drawn in
red. Detected edge points are shown in green.
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5.5 Discussion

The main goal of this work was to develop an approach for learning strong 3-D models,

with unknown topologies, from single 2-D images. In particular, we are working with

models that represent objects as 3-D assemblages of sub-structures that we assume to be

effective at representing a range of objects for a variety of vision task. A key technical

challenge for learning such models from single 2-D views was streamlining the inference

so that model hypotheses can be explored relatively quickly. A second key challenge

addressed in this work was to arrange an image model that statistically explains every

image pixel to effectively mitigate against biases for more or less complex models, and

explaining more or less of the image. Dealing with these two challenges allowed viable

topologies to emerge that are consistent with multiple images of objects from the same

category.

We have developed the approach in a relatively simple domain, but the methods can

be extended to more general configurations (relaxing the right angle assumption), and a

larger palate of more deformable parts. Further, once we expand the collection of cate-

gories to more complex objects, we can explore more deeply how our clustering approach

interacts with learning and whether that can improve category recognition.
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CHAPTER 6

Conclusion

6.1 Learning models of object structure

In this dissertation we presented an approach for representing object structure with 3-

D geometric models and methods for inferring them from image data. We represented

object structure as a collection of connected 3-D geometric primitives, such as blocks,

cylinders, and ellipsoids, corresponding to object parts. We demonstrated our approach

on biological structure and man-made objects. In both cases, Alternaria and furniture

objects, we showed how a small set of production rules for piecing the parts together can

build category specific topologies of structure.

In addition to modeling structure, we separated a representation of the imaging system

away from the objects and their pose. This enabled a better understanding of the variation

of 3-D object structure viewed in image data. In the context of Alternaria, we developed

a model of the microscope capturing 3-D stacks of images. For furniture objects, we

created a model of a standard camera taking single-view images constrained to reduce

possible ambiguities. This abstraction allowed us to model object structure independent

of how it was imaged.

We defined a statistical model over the parameterized representations of both the ob-

ject structure and imaging system. Conditioned on an instance of these, our likelihood for

image data statistically generates observations. We then reverse this generative formula-

tion in terms of Bayesian statistical inference with a posterior distribution. To accomplish

the inference, we presented effective sampling algorithms that explore the varying dimen-

sions of topology space and parameter ranges within a particular topology. We showed

that both structure and imaging models can be inferred simultaneously given image data.

We further showed in the case of Alternaria that data-driven sampling is an effective

means to improve the convergence rate and inference of a posterior maximum. For the
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case furniture we demonstrated that we could infer category level information such as

topologies and shape statistics shared by objects across groups of images.

Understanding objects in 3-D enables more than just recognition in images. The mod-

els we learned can be used to extract quantitative information about structure. At the

most basic level, we learned models for particular instances, which is especially useful

in biological data, such as microscopic images of Alternaria; we can provide numerical

information about structure that was previously described by humans qualitatively. Sim-

ilarly, quantitative information is available for learned instances of furniture from single

view images. In this case, however, we also learned quantitative descriptions of category-

level structure; we extracted information about the topological definition for a category

of objects and the statistics over their shape.

When most people look at an object they not only see its surface, texture and outline,

but often understand its constituent parts. For example, we easily identify where a door

is located on a model of car not seen before. The structure representation yielding these

abilities goes even further, to the extent that we can predict where in 3-D unseen parts

are located and what they might look like. This type of 3-D part representation would be

extremely useful in situations where we want to build machines that can understand and

interact with objects as they exist in the world under unseen views. In this thesis we have

presented an approach that moves towards automatically learning such representations

and being able to use them to understand object structure in images.

6.2 Contributions

We have made a number of contributions in this work towards understanding images of

object structure.

• We propose learning both 3-D object structure and imaging models simultaneously

from data. Inference of the structure is assisted by an estimate of the camera, and an

improved camera estimate is possible by understanding the structure in the image.

• We present a parameterized point spread function model for a brightfield transmit-

ted light microscope.
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• We present a geometric primitive representation for biological structure composed

of independent or recursively connected filament-like parts, such as those in Al-

ternaria. The model can be extended to other specimens based on a set of rules for

its growth.

• We describe a specific grammar for Alternaria and discuss L-systems as a general

approach for biological structure representations.

• We present a generative model for the parameterized geometric structure of Al-

ternaria comprising ellipsoids and cylinders.

• We present an image likelihood for 3-D stacks of microscopic image data based on

geometric primitives in a biological structure model.

• We present a sampling algorithm that infers parameterized biological structure and

microscope imaging models from data simultaneously.

• We present a mixture of reversible-jump and diffusion-based MCMC samplers for

learning Alternaria structure models. The trans-dimensional sampler searches over

Alternaria topologies by implementing rules in its grammar for growth. The dif-

fusion moves search within the topology of an instance by sampling likely values

from parameter ranges.

• We present a data-driven augmentation to the MCMC sampler that improves suc-

cessful generation of substructure element proposals and increases sampler conver-

gence rate.

• We present a surface point detection algorithm from 3-D stacks of microscope im-

ages. We describe several directions for developing a more complete surface model

and using it to improve model fitting.

• We present a comparison of using different point spread functions and their effects

on fitting structure in the Alternaria data.
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• We demonstrate that the sampling algorithm successfully fits Alternaria structure

and microscope point spread functions to 3-D stacks of images.

• We present a constrained camera model that can produce arbitrary single view im-

ages of 3-D object models and minimize parameter ambiguity.

• We present a parameterized, connected block structure model for tables and show

how it can be fit to single view images.

• We present a generalized structure model that can describe man-made furniture

objects comprising a topology of connected blocks.

• We present a generative category model for furniture objects that includes stochastic

topology creation and structure shape statistics.

• We present an image likelihood for detected features in images of objects captured

by a standard camera. This includes edge points and surface points, but can be

extended to color, texture, and other interest points.

• We present an generative edge point distance measure for our likelihood model and

a method to compute it quickly during each iteration of the inference process.

• We present a sampling strategy that mixes Metropolis-Hastings and stochastic dy-

namics. For cases of numerical differentiation on a small, fixed number of pa-

rameters, e.g. the table model, we mix Hyperdynamics, Langevin dynamics, and

Metropolis-Hastings to quickly explore the highly correlated state space.

• We present a Metropolis-Hastings covariance scaled sampling extension to situa-

tions where the form of the posterior distributions is not completely known, and

use it as a mechanism to make large jumps between modes of the posterior.

• We demonstrate how mixing the above samplers successfully fits 3-D structure and

camera models to single view images of furniture objects with fixed topologies,

such as a table.
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• We present a sampling algorithm to learn topologies of general furniture objects us-

ing reversible-jump on the rules of the structure model. The algorithm also samples

within topologies by using stochastic dynamics and Metropolis-Hastings.

• We present a stochastic dynamics sampler based on the Verlet algorithm as an al-

ternative to the Hyperdynamics and Langevin mixture. The latter become pro-

hibitively expensive to use with numerical differentiation as the number of param-

eters increases and the topology is unknown.

• We demonstrate how category models are successfully fit for types of furniture

objects including tables, chairs, footstools, desks, and sofas.

• We demonstrate that the learned furniture category models can be used for recog-

nition of objects in unseen images.

6.3 Future work

This work can be extended in many directions, with the most immediate being an increase

in the number of learned furniture categories. Preliminary work suggests that creating

cross-pieces between two blocks in our furniture model enables us to represent many

more structures, for example bookshelves. In other words, by expanding the rule set for

constructing topologies of blocks, we can represent more types of furniture objects. A

challenge in this extension includes creating reversible-jump sampler moves that effec-

tively transition with a reasonable acceptance rate between cross-piece blocks and other

types of attachment.

Another direction we plan to explore is further investigating learning clusters of struc-

ture. There are currently two types of clustering possible with our model. We could col-

lect images from different categories together in a single group and learn subcategories

of object structure within that set. This would be an unsupervised approach to learning

structure categories. Alternatively, for a set of images within the same category, we could

focus on learning subcategory structure, such as chairs with armrests and those without.

An idea for pursuing this line of clustering includes running the sampler for some time to



155

fit rough structure topologies, then allowing it to split categories into subcategories and

fitting more detailed structure topologies within these clusters.

Both of our structure and image likelihood models for man-made objects could be im-

proved in multiple ways. We could try fitting more sophisticated structure elements within

our object model. For example, we could use shapes defined with splines or generalized

cylinders to capture curvature. We could also relax the prior over block attachment angle

to allow for topologies with more then just right angle attachments. The image likelihood

model could be extended by representing other detectable image features, including ob-

ject texture and color. We could also develop a generative approach for detectable corners

in an image, such as those from a Harris corner detector.

For our stochastic dynamics sampling algorithms that rely on derivatives of the likeli-

hood function, we currently use numerical differentiation. As the number of substructures

or blocks are added to a model, this computation becomes extremely expensive. An alter-

native approach that would significantly speed up the sampler is an analytical derivative

computation. The difficulties in this lie in the number of parameters relating to the ge-

ometric primitives and their transformations. For the case of Alternaria and 3-D stacks

of images, we have formulated analytical derivatives with orthographic projection of el-

lipsoids and cylinders. An implementation of this formulation is still needed, however.

For single view images from a standard camera, the problem is more difficult due to a

perspective projection. Ideas for solving this problem have been previously addressed

by Lowe (1991), indicating that an approximation is possible.

Other ideas for improving inference through sampling is to define more extensive

data-driven proposals. This includes estimating the location of 3-D planes in images,

block corners, or complete parameterizations of blocks. For stacks of 3-D microscopic

images, we could also extend the surface reconstruction algorithm, as described in Ap-

pendix B, and fit our structure model to that instead of solely to image data. This could

improve the fit of the model, and improve the surface reconstruction.

A parallel direction that we have already begun investigating with some success is

fitting the 3-D scene orientation and camera viewing it to single view images. For images

of indoor scenes where a majority of the edges are parallel to one of three primary axis,
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we utilize our image likelihood model to estimate the orientation of the primary walls of

the scene and the direction of the camera. A direct extension of this approach is to include

our learned 3-D models of furniture objects as structure proposals in order to recognize

and place them within the scene. By assuming that all objects in a scene are aligned with

one of the three primary axis of the scene, we can infer the scene orientation and better

estimate objects that are difficult to detect. We can also start to learn about relative sizes

of objects in the scene.

Finally, we would like to take the approach for learning category parameters of struc-

ture models of man-made objects and apply that to biological structure, such as the Al-

ternaria model. This would enable learning quantitative structure information that char-

acterizes species or phenotypes of Alternaria. For example, we could quantify the average

branching angles or spore count of one species versus another. This would further con-

tribute towards the overall goal of building a high-throughput analysis system capable of

automatic species classification.
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APPENDIX A

Markov Chain Monte Carlo Sampling

A.1 Introduction

According to Sokal (1989), Monte Carlo methods are a bad approach and should only be

used “when all alternative methods are worse.” The primary justification for this is two-

fold: (1) unlike analytical methods, numerical methods utilize algorithms to estimate their

solution and have more potential for statistical error; and (2) compared with other numer-

ical methods, Monte Carlo approaches are extremely inefficient. In fact, citing the central

limit theorem, Sokal argues that the amount of error around any estimate achieved with

Monte Carlo methods is of the order 1/
√
n, where n is the number of samples used for

estimation. If any other numerical methods are available with smaller error, they should

be used instead. It is often the case, however, that many common real-world problems

push the error of deterministic numerical methods past Monte Carlo error thresholds.

Sokal uses the example of numerical integration with Simpson’s rule. Under this com-

mon approach, when a function of d dimensions is broken into n intervals to approximate

analytical integration, the error is n−4/d. Thus, in high dimensions, e.g., d > 8, applying

Simpson’s rule for numerical integration has worse error than an estimate from Monte

Carlo sampling. As in many real-world domains, problems in computer vision frequently

have many degrees of freedom resulting in intractable analytical solutions. Thus we feel

justified in turning to sampling methods.

Although the work presented in this thesis does not currently estimate expectations

using Monte Carlo samples, it is desirable to express how much error is involved in such

averages, and how long a Markov chain approach will take to converge to the stationary,

or target, distribution. Having a quantitative way to estimate convergence would be useful

in our application. Moreover, for projects that extend this work, where we might build

a hierarchical Bayesian models, it could be useful to compute expected values of solu-



158

tions instead of maximum a posterior estimates. In this case, having an estimate of error

involved would be informative.

For the remainder of this appendix, we describe the theoretical analysis of MCMC

methods to provide reasoning for their usage in our application of learning structure

models. We follow the presentation of Sokal (1989) and Neal (1993) to initially show

under what conditions an MCMC sampling algorithm converges to a target distribution,

which in our case is typically a posterior distribution. We further outline ways to estimate

how long convergence could take and how to estimate the number of samples required to

achieve a desired error rate. Finally, we summarize the Metropolis-Hastings algorithm,

a specific type of MCMC sampler used throughout this dissertation and show how that

algorithm satisfies the convergence requirements.

A.2 Markov chain Monte Carlo theory

Suppose we would like to generate random samples from a target probability density

function π on a (discrete state) space S. For large enough sample size N , we can produce

expectation estimates using Monte Carlo integration

E[f(X)] =

∫
S
f(x) π(x) dx (A.1)

≈
N∑
n=1

f(xn) π(xn) . (A.2)

Furthermore, if we can reliably sample from π, we can be sure to find states with maximal

probability.

The method for generating samples described here produces a stochastic process,

specifically a Markov chain, that converges to the target distribution π when started from

an initial distribution α and an arbitrary point in S . We further provide estimates for how

long the convergence will take and the amount of error produced in estimates with the

samples. Although our application is currently only to estimate extrema of a distribution,

knowing the convergence rate would still be helpful.
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We first review Markov chains as a stochastic process for generating samples over a

state space. Each transition in a Markov chain is independent from all others by having its

state depend only on the previous. In other words, for an initial distribution αx = P(X =

x) on S and transition probability matrix P with elements pxy = P(Xt+1 = y |Xt = x),

the probability of n successive states is

P(x1, . . . , xn) = αx1 px1x2 px2x3 . . . pxn−1xn . (A.3)

The matrix P satisfies pxy > 0 for all x, y and
∑

y pxy = 1 for all x. It is also useful to

define a n-step transition probability

p(n)
xy = P(Xt+n = y |Xt = x) . (A.4)

It can be shown that the matrix P n has elements p(n)
xy .

We next define two useful attributes of a Markov chain P : irreducibility and station-

arity. A chain is irreducible if there is a non-zero probability to get from a state x to any

other state y with zero or more transitions, i.e. p(n)
xy > 0 for all x, y ∈ S and some n ≥ 0.

A distribution, such as π, is stationary for a chain if

∑
x

πx pxy = πy , (A.5)

for all y ∈ S . A sufficient, but not necessary, condition for guaranteeing a probability

distribution π is stationary for a chain P is the detailed balance condition

πx pxy = πy pyx , (A.6)

for every pair of states x, y ∈ S . Most MCMC methods make use of this condition to

obtain stationarity.

If an aperiodic Markov chain is irreducible and has a stationary distribution (not all

chains must), then it can be proved that

lim
n→∞

p(n)
xy = πy . (A.7)
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A similar result holds if the chain has period d > 1. This theorem implies that the chain

converges to the stationary distribution π as its length goes to infinity, regardless of the

starting distribution α. An important result of the above theorem, and the strong law of

large numbers, is that simulating the Markov chain P is a suitable means to generate

samples from π and perform Monte Carlo average estimations, as in (A.2). Further, by

applying the central limit theorem, it can be shown that the amount of error of any such

statistical estimates will be proportional to n−1/2.

A.3 Convergence rate and sample correlation

We now turn to defining bounds for how long the convergence will take and how much

correlation exists between generated successive states. For a Markov Chain P with sta-

tionary distribution π, a function ft = f(Xt) on the state space S has stationary mean

µf = 〈ft〉 =
∑
x

πx f(x) . (A.8)

Both convergence time and correlation are defined in terms of the autocorrelation

Cff (t) = 〈fsfs+t〉 − µ2
f (A.9)

=
∑
x,y

f(x)
[
πxp

(t)
xy − πxπy

]
f(y) , (A.10)

which is normalized and denoted ρff (t) = Cff (t)/Cff (0). It is assumed that the normal-

ized autocorrelation decays exponentially with the length of the chain. So the exponential

autocorrelation time is defined as

τexp = sup
f

{
lim sup
t→∞

t

− log |ρff (t)|

}
. (A.11)

The time is the number of steps taken in the chain for convergence to an upper bound of

the autocorrelation under the slowest converging mode (f ). This can also be interpreted

as the number of samples to throw away at the beginning of the Markov chain run before
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equilibrium is reached, so called burn-in time.

For measuring the amount of error involved in an average estimation of f , we define

an integrated autocorrelation time

τint,f =
1

2
+
∞∑
t=1

ρff (t) , (A.12)

and say that a sample mean f̄ ≈ 〈f〉 has variance

V(f̄) =
1

n2

n∑
r,s=1

Cff (r − s) (A.13)

≈ 1

n
(2 τint,f )Cff (0) . (A.14)

The main idea behind this statement is that the variance of f̄ is a factor of 2 τint,f larger

than it would be if all the samples were completely independent. Another interesting

point we can extract from this is that the number of independent samples during a run of

the Markov chain of length n is approximately n/2 τint,f .

Estimating the values of τexp and τint,f for a Markov chain is not always a straight-

forward process. Sokal (1989) describes several empirical techniques that could be used,

with most involving estimating the autocorrelation function Cff (t). In any case, an esti-

mate should be made for the the number of samples to discard at the beginning of the run,

τ , before equilibrium is reached. We can than use this value to approximate the order of

the statistical errors as (τ/n)1/2. Further, since τexp and τint,f are typically of the same

magnitude, we can use τ to estimate the number of samples needed for accurate averages.

For example, if 1% error is desired, we should run the chain for about 10000τ iterations.

A.4 Metropolis-Hastings algorithm

Finally, we review how the Metropolis-Hastings (MH) algorithm satisfies irreducibility

and stationarity and thus generates samples that can be used in Monte Carlo averaging.

Irreducibility can be maintained in the chain by making sure there are no zero probability
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transitions. As previously mentioned, a sufficient condition for stationarity is to show

detailed balance (that the chain is reversible). The MH algorithm maintains this condition,

as we show.

Let p(0)
xy be the proposal probability in the algorithm from state x to y. This proposed

transition is either accepted or rejected with probability axy. Then the transition matrix in

the Markov chain P has non-diagonal elements of accepted moves

pxy = p(0)
xy axy . (A.15)

The diagonal elements of P are the probability of rejection (1− axy), i.e., the probability

of staying in the same state

pxx = p(0)
xx +

∑
y 6=x

p(0)
xy (1− axy) . (A.16)

This can be thought of as the probability of proposing to stay in the same state or propos-

ing a transition to any other state and rejecting. As long as pxx > 0 and pxy > 0 for all

elements of P , the chain will be irreducible.

To ensure the Markov chain has a π as its stationary distribution, it is sufficient to

show the detailed balance condition (A.6) holds. The chain satisfies this condition if and

only if for all x 6= y,

axy
ayx

=
πy p

(0)
yx

πx p
(0)
xy

. (A.17)

The Metropolis-Hastings algorithm for MCMC sampling satisfies (A.17) by setting the

acceptance probability to

axy = min

{
1,
πy p

(0)
yx

πx p
(0)
xy

}
. (A.18)

Thus, by repeatedly proposing a state y from p
(0)
xy given the current state x, and accepting

it as the next state with probability axy, we are guaranteed to generate samples from the

distribution π once the chain converges.
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APPENDIX B

Surface Reconstruction

B.1 Introduction

In this appendix we present our ideas for building an improved surface reconstruction

and how it can utilized to improve 3-D structure learning and recognition. For our work

on fitting 3-D structure models to biological images (Chapters 2 and 3), visualization of

extracted surface points was not the primary focus, so we did not pursue a sophisticated

algorithm for surface reconstruction. Instead, we created the visualization for Alternaria

in Figure 2.3 with a simple approach that utilized gradient information from our surface

point detector of Section 2.6.1. Starting with the detected surface points, we create in-

dependent, fixed-sized polygons centered at each point. The normal for the polygon is

defined by gradient information extracted from the detector. While this produced a rea-

sonable visualization sufficient for low-resolution applications, it does not approach state

of the art reconstructions and can be improved significantly.

Automatic surface reconstruction from three-dimensional point clouds has been stud-

ied for some time yielding impressive results (Hoppe et al., 1992, 1994; Amenta et al.,

1998; Amenta and Bern, 1999; Levin, 2003; Amenta and Kil, 2004; Fleishman et al.,

2005). The ideas presented in this appendix go beyond simply applying one of these al-

gorithms. We explain how these approaches can be combined with information from our

3-D structure model to improve both model inference and surface reconstruction. The

primary purpose of detailing this information is to provide a guide for improving surface

reconstruction when using our 3-D model and for improving 3-D structure learning when

we have an estimate of the reconstructed surface.
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B.2 Surface reconstruction as data

We first explore arguments for and against fitting a surface to the detected point cloud

and using that as the data to infer Alternaria structure from. Specifically, we consider two

approaches:

1. Fitting geometric primitives directly to the reconstructed surface, without using

Bayesian inference of a model;

2. Using the reconstructed surface and fit geometric primitives as a bottom-up, data-

driven guide to the sampling approach for model inference.

We begin by considering reconstructing the surface of Alternaria and then trying to fit

geometric primitives to the surface, not necessarily in a Bayesian way, but perhaps sta-

tistically in some sense. From the reconstruction we could extract a skeletal structure,

for example the medial axis (Amenta and Bern, 1999; Amenta et al., 1998), which would

tell us where the branches occur in the structure, a type of topology. This in itself would

be extremely informative. For example, when we start fitting geometric primitives to the

images of Alternaria, like cylinders and ellipsoids, we would have a good estimate for the

topology and basic shape; the branches would be in the approximately correct location.

So we could detect the skeleton of the surface, then populate it with cylinders and ellip-

soids. This would be an extremely valuable estimate of topology and basic shape. The

ability to hypothesize a skeleton of the structure would significantly improve the speed

and accuracy of inference by reducing the search space over topologies.

Reconstructing the surface also provides a means to estimate curvature of the structure

at arbitrary locations. In Alternaria a high curvature is indicative of a spore in the struc-

ture. So where there is a particular, possibly learned, level of curvature on the surface, we

could bias the geometric primitive selection to more likely be an ellipsoid. This would

increase the chances of hypothesizing the correct primitive at a point in the skeleton of

the structure.

Instead of analyzing curvature, we could do something similar in spirit to a Mov-

ing Least-Squares (MLS) approach for reconstruction (Amenta and Kil, 2004; Fleishman
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et al., 2005; Levin, 2003). The least-squares residuals in MLS reconstruction indicate

how well the surface point cloud fits our hypothesis for the surface manifold. We could

try an MLS fit of geometric primitives embedded at a specific point on the skeleton. If the

fit of a particular geometric primitive has low residuals, we know that it is a good primi-

tive to use; we could decide whether a particular piece of the surface is modeled better by

a cylinder or ellipsoid shape. This would provide just as much information as curvature

analysis, but now we would have a statistically sound estimate of a good shape at a point

on the skeleton. A generalization of this idea would be to integrate the shape-based MLS

approach outlined above with the surface recognition MLS into a single algorithm.

A drawback of this approach is that, in order to fit structure, we rely heavily on our

ability to generate an accurate surface reconstruction. In our current Bayesian inference

process, we fit a structure and imaging model to the whole data set—the image pixels.

But for the approach above, if part of the surface reconstruction is incorrect, the fit would

inevitably be wrong. Whereas with Bayesian inference of our generative model for the

data, we are better able to accommodate noise, e.g. excessive blur from the optics, and

hallucinate missing data. Further, if we fit a Bayesian model, we can use it for higher-level

inference on questions like which species the structure belongs to; statistical inference

across several data-sets could be done to learn the structural form of different species.

Another issue with fitting structure directly to the surface reconstruction is the depen-

dency on accurate point detections. Significant blurring exists in the microscopic images

of Alternaria, so there is a lot of ambiguity as to where the actual surface points are lo-

cated within each image in the stack. It is an unrealistic assumption to make that we

could extract a very accurate set of points for surface reconstruction. This is particularly

true when two or more pieces of the structure are close in the depth direction; the image

resolution is much lower in this dimension.

The surface reconstruction process completely disregards the image formation pro-

cess. Blur in microscopic images is viewed as an obstacle to extracting good surface

points from the data for reconstruction. This is in contrast to a generative model and

inference approach where we model both the structure and imaging system. We view

the image blur as structural information that has been misplaced, i.e. diffracted, by the
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imaging system. If we can understand how that blurring happened, we can use it as in-

formation about the structure. This concept of using the blur in the image as information

does not exist in the surface reconstruction approach.

We could further improve upon the ideas above by utilizing the geometric structure

extracted from the surface reconstruction as a data-driven component in the sampler for

statistical inference. The basic idea is to apply the approach previously mentioned as a

system of proposals for a sampler in a Bayesian framework. This would have all the ad-

vantages mentioned above, but without the drawbacks because they are only proposals in

a larger statistical inference process. The issues here would be how to define a probability

distribution over the extracted structure from the surface reconstruction. But assuming

this could be solved in a reasonable way, such a proposal distribution would increase the

convergence rate of our sampler significantly by eliminating most of the costly search

over topologies.

As discussed below, once we start fitting the model to the data with our Bayesian

inference process and the surface reconstruction based proposal distribution, we could

update the surface reconstruction with the fit model. This should further improve overall

inference, but at the cost of extra computation time to continuously re-estimate the surface

manifold.

B.3 Improving surface reconstruction with a 3-D model

In this section, we explore situations where the detected surface points are not sufficient

for a good reconstruction, but were enough for an estimate of 3-D model structure. For

example, we have an inferred 3-D structure model and a cloud of points detected in the

data, but the points are not sampled reliably and/or densely enough to reconstruct an

acceptable surface. In this case we can use the model to improve the reconstructed surface

from the point cloud.

By utilizing the fit structure model, we could improve the quality of the detected

surface points in the data, leading to an improved surface reconstruction. We are currently

using gradient thresholding to detect surface points in the data; the detector is a 3-D Canny
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surface point detection algorithm. As usual for this algorithm, the gradient threshold value

we choose is constant for the entire set of pixels in the stack of images under analysis. But

if we have an estimate of where the structure is in the images, then we could adaptively

change the gradient threshold during the detection algorithm when near a region close to

the ”crust” or shell of the structure model. So even though the gradient detection may

not have hardly any change in gradient at a particular point, we could change the gradient

threshold at that point if the model is located nearby. In other words, we are making the

surface point detection more sensitive in areas nearby the structure model.

A second idea for improving surface detection focuses more on the reconstruction

algorithm, possibly utilizing the improved point cloud from the previous idea. The struc-

ture model gives an estimate of a manifold representing a simplification of the true surface

manifold in the data. Using the detected surface points, we could combine them with the

model to better estimate the true manifold. In the following description, we assume an

estimate for our 3-D structure model is available.

The reconstructed surface is a 2-D manifold embedded in R3. In the MLS approach

we select a surface point si from the point cloud and find the best plane, in the least-

squared sense, that fits the data, with an orthonormal coordinate system centered at the

projection of si. We then project all the near-by surface points onto this plane and find

the best 2-D polynomial that minimizes the distance between the projected 2-D points

evaluated at the polynomial and the distance from the plane to the actual surface points,

again in the least-squared sense. In our case, we not only know the detected surface points

and their normals, but we already have an estimate of a manifold that is probably nearby

the actual surface manifold. The structure model comprises ellipsoids and spores, so we

could utilize the analytical form of these objects to propose, or give heavy weighting

to, the form of the 2-D polynomial (from the quadrics) we fit to the data in the MLS

approach. This should greatly reduce computation time and error in finding the moving

least-squares fit of a polynomial to the data.

It is possible that parts of the structure model are fit where there is missing data.

Indeed, this is one of the major benefits of inferring a model from the data. So another

improvement would be to hallucinate reconstructed surface where there isn’t even data,
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assuming a correct fit of the model. We could do this generatively from the structure

model in areas of the point cloud with low density. This would definitely improve the

overall surface reconstruction; we would be reconstructing surface from what appears

noise or nothing at all.

Finally, having the model should enable heavy smoothing of the data without worrying

about losing fine detail; the model is there to enforce sharp edges and detail. We could

easily improve upon the work of Fleishman et al. (2005) to detect where polynomial-

based reconstructions should be broken apart to make sharp edges. In essence, what we

would be able to do better than other techniques is resolve the ambiguity between noise

in the data and fine detail in the structure.
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APPENDIX C

Likelihood Weight Estimation

C.1 Introduction

For the image likelihood of Chapter 4, we introduce a set of binary weights to classify pix-

els based on output from an edge detector. Each pixel is classified according to whether

it contains an edge point from the model, if it has an edge from noise, or is missing

a detected edge point that the structure model suggests should be detected. Chapter 5

continues the approach of making binary assignments for edge detection type made at a

pixel, although in a different formulation. In this appendix, we show how the problem of

estimating weight parameters in inverse sequence alignment is similar to finding continu-

ous weights in a pixel alignment problem for likelihood computation. The ideas presented

here are intended to provide the groundwork for improving pixel classification and weight

estimation in our image likelihood models of Sections 4.2.3 and 5.2.3.

C.2 Inverse alignment background

Given a collection of aligned sequences, the goal of inverse parametric sequence align-

ment is to to learn parameters that optimize a linear scoring function of those alignments.

Although it may not be possible to find a set of parameters that yields an optimal score

for all collections of aligned sequences, the problem and solution are formulated in such

a way that the parameters closest to optimality, within some ε, are recovered.

The algorithm presented in Kececioglu and Kim (2006) and Kim and Kececioglu

(2008) for learning the scoring function parameters is quite general. They show that if

the objective function of an optimization problem is linear in its parameters, then a linear

program that has exponentially many constraints (inequalities) can be solved in polyno-

mial time. This opens up the possibility of applying the algorithm to many problems with

similar parametrization and constraint sets, like pixel classification, as we will describe.
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For the problem of aligning a set of sequential objects S, like two strings, learning

the alignment scoring function parameters through linear programming is formalized as

follows. Let the scoring function for the alignment A of the sequences in S be defined as

f(A) = f0(A) + f1(A)w1 + · · ·+ fp(A)wp , (C.1)

where p is the number of parameters, and the sub-scoring functions fi(·) measure fea-

tures of the alignment, like substitutions; the wi are the parameters, or weights, we are

interested in learning. Now suppose the alignment A is the optimal alignment for the

sequences in S. Then for every other alignment B of S, the following inequality holds

f(A) ≥ f(B) , (C.2)

assuming optimality translates to maximizing the scoring function. Since the inequality

for each B is linear in its parameters, we can formulate finding the parameters as a linear

program, given some objective function, that should also be linear in its parameters.

Depending on the type of alignment operations defined between the sequences in S, it

is possible to have an exponential number of other non-optimal alignments and, hence, an

exponential number of inequalities. For the case of the sequences in S being two strings

with substitution and gap differences, there are in fact Ω(4n) inequalities (Kececioglu and

Kim, 2006). It turns out, however, that by making clever use of the Separation Theo-

rem and designing a cutting plane algorithm, this linear program can still be solved in

polynomial time, under certain conditions, such as a linear objective function.

The constraints in the linear program are a set of intersecting half-spaces that define

a polyhedron P (a potentially irrational and unbounded polyhedron, but suppose for sim-

plicity it is not). For linear programming with an objective function max{c · x}, we want

to find the point x ∈ Rd that has maximal projection on the vector c and is in the poly-

hedron P . This is an optimization problem, and according to the Separation Theorem, is

equivalent to the separation problem. The latter is defined as follows. For a point y ∈ Rd,

decide whether y is inside P; if it isn’t, find the hyperplane separating y from all the

points that are in P . The equivalence is highlighted by the fact that if one of the problems
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can be solved in polynomial time, the other can as well.

Under several constraints, including that the alignment scoring function is linear in its

parameters, the inverse alignment problem can be solved in polynomial time by giving

a separation algorithm to solve the separation problem in polynomial time (Kececioglu

and Kim, 2006). Specifically, a cutting plane algorithm exists that solves the separation

problem for a polyhedron in, for most practical purposes, polynomial time.

One detail not explicitly summarized yet is how to handle over-fitting parameter val-

ues to each set of sequences. As was described, for each set of sequences Si there is an

optimal alignment A∗i . The parameters learned for the scoring function under this align-

ment, however, may not be shared for the optimal alignment of some other sequence. To

ameliorate this, an alignment is said to be near optimal and considered acceptable if its

score is within some ε of the optimal alignment

f(Ai) ≥ (1− ε)f(A∗i ) , (C.3)

where ε is chosen as close to zero as possible and fixed for all sets of sequences Si. This

is referred to an ε-optimal alignment and enables learning a set of parameters that are a

best-fit across a whole collection of sequences. It has been shown that this relaxed linear

programming problem can also be solved in polynomial running-time.

The results in Kececioglu and Kim (2006) are convincing and show that the algorithm

can find an ε-optimal set of parameters for a data set in a reasonable amount of time.

For each training data set, a convex combination of the parameters at the extremes of the

optimization function gave a good estimate of the parameters found in the test set. In fact,

the midpoint of the convex combination in the training sets seems to generalize well to

the test sets.

Kim and Kececioglu (2008) builds upon the previous work and shows that including

accommodations for noise and missing sequence data increases performance further. A

more useful error measure is also introduced in the paper and used in the testing frame-

work. Finally, by including cross-validation in the evaluation, it is apparent that the prob-

lem of over-fitting is not a significant issue.
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C.3 Pixel alignment problem

Our research is focused on developing efficient inference algorithms for fitting three-

dimensional object models to single view images. Since a 3-D object model can be pro-

jected into an image under widely varying views, we fit a constrained camera model as

well. In fact, we fit the models simultaneously. The details of our object and camera

model can be found in Chapter 4 and are omitted here. We begin by stating that we have

a 3-D object model, e.g. a table, that has a large set of parameters. We also have some

concept of a perspective projective view, e.g. a camera, of that model that has a set of

parameters, such as focal length, position, and orientation. We can use this camera model

to project a view of the 3-D object model into a 2-D image. This process comprises our

generative model for image data and is what we use to fit the models to images using

Bayesian statistical inference. Our object models are wire-frame and we try to fit them to

detected edge points in the images.

The overall goals of this research are: (1) develop efficient inference algorithms to fit

object and camera model parameters to a given image, and (2) use this inference process

to learn 3-D object models from a statistical representation of geometry that we develop

by inferring shared 3-D structure.

Let us summarize Section 4.2.3 and be a bit more specific about the inference problem

we are trying to solve. Our generative process for an image is pixel based; we assume

each pixel in the projected model image independently generates a pixel value in the data.

More precisely, a data pixel value results from one of four processes: an edge in the object

model, image background, noise from clutter, or missing data (the edge detector and

object model are not perfect). Given an image I and object and camera model parameters

θ, we can construct a projected model image Iθ from the wire-frame of the object under

the camera, with hidden lines removed. We then model detected edge points in the data

image as generated by the lines in Iθ. Please see Figures 4.1 and 4.2 for an illustration.

We measure the goodness of fit of a model to data with a likelihood function. Our

likelihood function for a given image I and varying model θ can be written as
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L(I |θ) =
N∏
n=1

4∑
i=1

pi(In |θ)wi , (C.4)

where N is the number of pixels in the input image; the density functions pi and fixed

weights wi correspond to each component of the generative process for a pixel. The

likelihood is not a probability distribution, but it is a density function that fits into our

Bayesian statistical inference framework. What we would like to learn from some training

data are good estimates of the weights wi, which we will call parameters of the likelihood

function.

One thing to notice about our likelihood function is that it is not linear in its param-

eters. Even if we take the log of the function and reduce the product term to a sum, the

parameters are trapped inside the summed logarithm functions. So our idea is pretty sim-

ple, we are going to learn weights under a linear objective and scoring function that are

semantically similar to the ones in the likelihood, but not exactly the same. To do this,

we rearranged the problem a bit to make it possible to solve with the inverse parametric

alignment approach.

To formulate our (alternative) pixel classification problem we will use similar notation

and ideas from the above referenced papers. For example, the concept of sequence align-

ment is extended to aligning pixels in images. Conceptually, the alignment between a data

image I and a model image Iθ is pixel-to-pixel 1. But what is more important is knowing

which of the four types of generative processes links each pixel-to-pixel alignment, e.g. a

pixel in I could be linked to an edge, background, noise, or missing data pixel in Iθ.
LetA be a pixel alignment between the data and model images I and Iθ. One idea for

the score of a pixel alignment comprises a linear weighting of the sub-scoring functions

f1(A) — the number of edge pixels in I generated by model edges in Iθ,

f2(A) — the number of background pixels in I generated by background in Iθ,

f3(A) — the number of noise pixels in I,
1Note that the pixel-to-pixel alignment referred to here is not limited to homogeneous indexes between

the data and model images. Rather, an edge point pixel in the data could be aligned with a nearby edge
point pixel in the model.
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f4(A) — the number of pixels in I generated by unobserved (missing) edges in Iθ.

The functions f3 and f4 are actually a type of penalty against the overall score; a large

amount of noise or missing data is most likely negative evidence for a good fit. Then the

complete scoring function for an alignment A is

f(A) = f1(A)w1 + f2(A)w2 − f3(A)w3 − f4(A)w4 . (C.5)

We acknowledge that this is perhaps not the best set of scoring functions that could be

used in this situation, but it seems like they will map fairly well to our likelihood function.

Using the scoring function (C.5), we can define the set of constraints for our parameter

optimization problem. For some maximum-score alignment A between data and model

images I and Iθ, every other alignment B obeys the inequality

f(A) ≥ f(B) . (C.6)

Since there are four types of alignment per pixel, there will be an exponential number

of other alignments B and inequalities like (C.6). Indeed, there are exactly 4N of them,

where N is the number of pixels in the data and model images. For some clever choice(s)

of the parameters wi, the alignment A maximizes the scoring function, subject to all of

these inequalities. As with sequence alignment, we can use Separation Theorem to solve

a linear program in polynomial time to find a good choice of parameters.

Given an optimal alignment A, the scoring function (C.5) and exponential number of

inequalities like (C.6), we can formulate the problem of finding the parameters wi in the

scoring function as a linear program. This is because the inequalities are actually linear

in their parameters, making them the constraints in the linear program. We will also need

to develop an objective function to maximize under the linear program.

The problem with solving this linear program, though, is the exponential number of

constraints. But as was shown in the papers and previously discussed, as long as certain

conditions are met, such as a linear objective function, we can solve this in polynomial

time. It is not clear exactly what the best objective function would be in the case of pixel

alignment, but perhaps a good function would be max{w1 + w2 − w3 − w4}.
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The linear programming optimization problem is solvable in polynomial by apply-

ing the Separation Theorem. As long as we can solve an equivalent separation problem

in polynomial time, the Separation Theorem essentially says that we can solve the opti-

mization problem in the same time. We can design a separation algorithm to solve this

problem, a cutting-plane algorithm, and apply that. Since our formulation of the prob-

lem for images is so close to the sequence alignment problem, we believe that the cutting

plane algorithm implementation should be very similar.

For a whole set of images with given object and camera models that fit them best, we

could use our cutting-plane algorithm to solve for the optimization problem and find the

best set of parameters wi. For reasons previously discussed, the parameters would not

be optimal for all images in the set, but ε-optimal. Our idea then is to take those learned

parameters and use them in the likelihood computation (C.4).

It is unfortunate that the ε-optimal weights recovered in our linear programming ap-

plication do not have a direct link to the weights in the likelihood function (C.4). They

are semantically similar, however, and would provide good estimates and an interesting

alternative to the hard assignments made in Section 4.2.3.
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