Extracting Structure from 3D Images

Joseph Schlecht
Dept. of Computer Science
University of Arizona

Computer Vision and ... Fungus

- Collaboration with mycologist Barry Pryor (UA) to analyze images of fungus
- Genus *Alternaria*
 - ~50 distinct species
 - Infects human and plant tissue
 - Microscopic
- Images of fungus obtained from microscope
 - Sequence of images created by varying focal length of microscope
 - 3D Microscopy

http://www.botany.utoronto.ca
3D Microscopy

- Transmitted light microscope
- Very shallow depth of field
 - Ratio of focal length to aperture very large

3D Microscopy

- View of fungus is imaged while focal length varied
- Results in a stack of images
 - Volumetric image data $I(x,y,z)$
- Image at depth d contains
 - In-focus portions of fungus within DOF
 - Blurry portions of fungus outside DOF at depths $\neq d$
Analysis Goals

- Automatically extract *Alternaria* structure
 - Visualization
 - Morphological quantification
 - Species classification
 - Link extracted structure to DNA

Approaches

- Initial approach focused on edge detection
 - Useful for visualization
- Probabilistic modeling approach
 - Good model will capture essence of the fungus
 - Enables pursuit of all analysis goals

Surface Detection

- 3D Edge detector
 - Extension of standard 2D Canny algorithm
- Convolve image stack with gradient of 3D Gaussian kernel
 - \(\nabla I(x,y,z) = I(x,y,z) \ast \ast \ast \nabla G_o(x,y,z) \)
 - Results in 3D gradient vector at each pixel
- Surface points defined by
 - All \(v \) in \(\nabla I(x,y,z) \) with \(|v| > t \)
2D Edge Detection

Resulting Gradient
Gradient Magnitude

If gradient magnitude larger than threshold, mark it as an edge point.

Thick Edges

Results in thick edges, depending on σ.

Use non-maximal suppression.

Choose max value along gradient.
Edge Following

- Follow edges in direction perpendicular to maximal gradient vector
- Re-apply non-maximal suppression
- Stop when maximal gradient magnitude drops below threshold
 - Hysteresis

Surface Detection

- Results in thick, bulky surfaces depending on σ
- Non-maximal suppression
 - For each v in $\nabla f(x,y,z)$ with $|v| > t$
 - Follow direction of v until $|u| < |v| > |w|$
 - Where u, w are neighbors in same/opposite direction of v
 - Mark v as surface point
- Follow maximum surface points (hysteresis)
 - For each neighbor u orthogonal to direction of v
 - If $|u| > t'$, apply non-maximal suppression to u using $t' < t$
- Construct 3D surface from detected points
 - Location of v in $\nabla f(x,y,z)$ gives position of surface point
 - Use direction of v to define surface orientation of a small surface patch
Modeling Alternaria

- Surface detection useful for visualization
 - Difficult to accomplish other goals
- Instead model Alternaria as a geometric structure
 - Fit parameters to data using statistical inference
- Could model it as a set of connected ellipsoids and cylinders
 - Good model simplifies structure but is also explanatory
- Initial model
 - Set of independent ellipsoids, [al-Awadhi 2003]
 - $\theta_i = (x, y, z, a, b, c, \varphi, \theta, \psi, \lambda)$

Model

- Use Bayesian inference to estimate parameters
 - $p(\theta | I) = c \cdot L(I | \theta) \cdot \pi(\theta)$
- From model parameters θ, define J as the (true) image scene
- Use J to construct data likelihood
 - $L(I | \theta) = \prod_k G(I_k ; \mu_k, \sigma_k^2)$
 - where $\mu_k = J_k$, $\sigma_k^2 \propto J_k$
Model

- Model prior

 \[\pi(\theta) = G(n; \mu_n, \sigma_n) \prod_{i=1}^{n} f_i(x_i, y_i, z_i) f_i(\alpha_i, \beta_i, \gamma_i) f_p(\lambda_i) \]

- Initially used near uniform distributions for \(f \)

- Improved by detecting near uniform estimates of ellipsoid parameters in data \(f \)

 - Apply Hough transform to (approximately) find ellipsoids

 - Vote for ellipsoids that fit the data

 - More votes == more likely

- Define probability distribution over ellipsoid parameters

- Uses output from surface detection

Sampler

- Posterior distribution over parameters very complex

- Created an MCMC sampler to find most likely \(\theta \)

 - Iteratively generates more likely samples from posterior

 - Used Metropolis-Hastings algorithm

 - Each iteration, generate a proposal and accept or reject

 - \[\alpha(\theta') = \min \left[1, \frac{q(\theta') p(\theta' | I)}{q(\theta) p(\theta | I)} \right] \]

- Proposal types

 - shift, resize, rotate, intensity

 - birth, death, split, merge

- Proposals from Hough transform (as in \(\pi \))

 - Data-driven MCMC
Results

- Validation of model on synthetic data
 - 10 ellipsoids
 - 80 images
 - 300x300
Results

- Sampler is expensive for volumetric image data
- Run it on increasing resolutions of the image data
Results

- Results from *Alternaria* data
 - 102 images
 - 700x700
Future Work

- Improve model prior to enforce connectedness between ellipsoids
 - Create conditionals for each ellipsoid
 \[\pi(\theta) = G(n; \mu_\alpha, \sigma_\alpha) \prod_{\rho=1}^n \pi_i(\theta_i | \theta_{i-1}, \ldots, \theta_1) \]
- Questions?