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Abstract

We develop an approach to learn stochastic geometric models of object categories from single

view images. We focus here on models expressible as a spatially contiguous assemblage of blocks.

Model topologies are learned across groups of images, and one or more such topologies is linked to

an object category (e.g. chairs). Fitting learned topologies to an image can be used to identify the

object class, as well as detail its geometry. The latter goes beyond labeling objects, as it provides

the geometric structure of particular instances.

We learn the models using joint statistical inference over structure parameters, camera param-

eters, and instance parameters. These produce an image likelihood through a statistical imaging

model. For inference we use trans-dimensional sampling to explore topology hypotheses, and al-

ternate between Metropolis-Hastings and stochastic dynamics to explore instance parameters at an

effective rate. During inference we maintain convergence to the target distribution. In practice we

are often able to find a good optimum in the samples.

We experiment with data sets consisting of images of standard furniture such as tables and chairs.

We demonstrate that we can learn models that are able to infer category and geometry in this kind

of data.
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1. Introduction

In this paper we develop an approach to learn stochastic 3D geometric models of object categories

from single view images. Exploiting such models for object recognition systems enables going

beyond simple labeling. In particular, fitting such models opens up opportunities to reason about

function or utility, how the particular object integrates into the scene (i.e., perhaps it is an obstacle),

how the form of the particular instance is related to others in its category (i.e., perhaps it is a

particularly tall and narrow one), and how categories themselves are related.

Capturing the wide variation in both topology and geometry within object categories, and in

particular, finding good estimates for the underlying statistics, suggests a large scale learning ap-

proach. We propose exploiting the growing number of labeled single-view images to learn such

models. While our approach is trivially extendable to exploit multiple views of the same object,

large quantities of such data is rare. Further, the key issue is to learn about the variation of the

category. Put differently, if we are limited to 100 images, we would prefer to have 100 images of

different examples, rather than, say 10 views of 10 examples.

Representing, learning, and using object statistical geometric properties is potentially simpler

in the context of 3D models. In contrast, statistical models that encode image-based appearance

characteristics and/or part configuration statistics must deal with confounds due to the imaging

process. For example, right angles in 3D can have a wide variety of angles in the image plan. But this

requires using the same representations for variability for both structure variation and pose variation.

This means that the represented geometry is less specific and less informative. By contrast, encoding

the structure variation in 3D models is simpler and more informative because they are linked to the

object alone.

To deal with the effect of an unknown camera, we estimate the camera parameters simultaneously

while fitting the model hypothesis. A 3D model hypothesis is a relatively strong hint as to what the

camera might be. Further, we make the observation that the variations due to standard camera

projection are quite unlike typical category variation. Hence, in the context of a given object model

hypothesis, the fact that the camera is not known is not a significant impediment, and much can be

determined about the camera, statistically, under that hypothesis.
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We explore our approach using object models that are expressible as a spatially contiguous as-

semblage of blocks. We also include in the model a prior on right angles between blocks. We

experiment with images from three sub-categories of furniture: tables, chairs, and bookcases. We

further simplify matters by considering images where there are minimal distracting features in the

background. Within this domain, we are able to automatically learn topologies. The models can

then be used to identify the object category using statistical inference. Recognition of objects in

clutter is likely effective with this approach, but we have yet to integrate support for occlusion of

object parts into our inference process.

We learn the parameters of each category model using Bayesian inference over multiple image

examples for the category. Thus we have a number of parameters specifying the category topology

that apply to all images of objects from the category. Further, as a side effect, the inference process

finds instance parameters that apply specifically to each object. For example, all tables have legs and

a top, but the proportions of the parts differ among the instances. In addition, the camera parameters

for each image are determined, as these are simultaneously fit with the object models. The object

and camera hypotheses are combined with an imaging model to provide the image likelihood that

drives the inference process.

For inference we need to find parameters that give a high likelihood of the data from multiple

images. To do so, we take a sampling approach. Because we are searching for model topologies,

we need to search among models with varying dimension. For this we use the trans-dimensional

sampling framework [8, 9]. We explore the posterior space within a given probability space of a

particular dimension by combining standard Metropolis-Hastings [21, 10, 1, 18], with stochastic

dynamics [23]. As developed further below, these two methods have complementary strengths for

our problem. Importantly, we arrange the sampling so that the hybrid of samplers are guaranteed

to converge to the posterior distribution. This ensures that the space will be completely explored,

given enough time.
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1.1. Related work

Most work on learning representations for object categories has focused on image-based appear-

ance characteristics and/or part configuration statistics (e.g., [6, 5, 4, 16, 28, 17]). These approaches

typically rely on effective descriptors that are somewhat resilient to pose change (e.g., [20]). A

second force favoring learning 2D representations is the explosion of readily available images com-

pared with that for 3D structure, and thus treating category learning as statistical pattern recognition

is more convenient in the data domain (2D images). However, some researchers have started impos-

ing more projective geometry into the spatial models. For example, Savarese and Fei-Fei [24, 25]

build a model where arranged parts are linked by a fundamental matrix. Their training process is

helped by multiple examples of the same objects, but notably they are able to use training data with

clutter. Their approach is different than ours is that models are built more bottom up, and this process

is somewhat reliant on the presence surface textures. Our work is driven by parametric parts that

provide strong cues when they are appropriate. A different strategy proposed by Hoeim et al. [12] is

to fit a deformable 3D blob to cars, driven largely by appearance cues mapped onto the model. Their

choice modeling in 3D simplifies a number of issues, and provides for more natural integration with

work in understanding scene geometry [11], as is the case for us. However, our modeling approach

is different in that we focus in on learning topologies for assemblages of parameterized parts, in-

stead of working with deformation of a single structure. Our interest in learning structure topologies

relates to recent work in learning abstract topologies [29, 15], and more concretely, structure models

for 2D images of objects (e.g., [30, 31]) constrained by grammar representations.

Our work is also related to a large body of older work on finding and recognizing objects in

images, given a precises 3D model, such as one might have for machined parts in an industrial

setting (e.g., [19, 13]). Finally, we also acknowledge work on fitting deformable models of known

topology to 2D images in the case of human pose estimation (e.g, [22, 27, 26]. We are trying to

learn such configurable part models for categories, and thus the inference procedures potentially

have a lot in common.
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2. Our approach

From an image collection of an object category, we learn a three-dimensional structure model

that probabilistically describes the form and appearance of the category. We accomplish this by

inferring instance parameters of object and camera models for each image, and jointly learning

across these a category-level organization of object parts (topology) and their distributions. Since

an object category typically has multiple, closely related structure topologies, e.g. chairs with and

without armrests, we learn sub-categories of structure. This enables us to capture variation within

the 3D structure of object categories and can be used to recognize or detect instances of our model

in new images.

In our approach we present a generative model for the 3D structure of an object, the camera

viewing it and the image captured. Our representation of an object comprises a set of 3D parts

linked together by a learned topology. The parts are geometric primitives representing unit pieces

of structure and are generated from distribution parameters specific to the object category. The

topology characterizes the spatial relationship between parts, and together with the parts, forms the

3D object model. We learn several object sub-categories by clustering over part topologies and

distributions; each object model instance is generated by one of the clusters. We further model

the camera capturing the view of an object into an image, enabling an understanding of imaged

objects under arbitrary views. Finally, conditioned on the object and camera models, we represent

independently detected image features, such as edge and surface points, as generated by object parts

projected under the camera model. By combining the object, camera and image models, we have a

process to generate images of objects that we can use for model inference.

Following a Bayesian strategy, we reverse our forward model and, from detected features in an

image, simultaneously fit the most likely 3D object model and camera to have generated them.

Using the inferred object and camera models for a set of images in a category, we learn the form

of the category topology and part distributions. In this way we have two types of parameters in our

model: per image and per category (or sub-category in the case of multiple clusters). We infer both

types of parameters together from a set of training images of an object category. For recognition or

detection in a new image, we need only infer the instance parameters.
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In describing our model and its process of inference, we first introduce some notation and param-

eter descriptions. For a single image, we label the corresponding set of structure parts in our object

model s and the camera capturing it c. The topology shared across multiple images generated by

the same object category is given by t. We label the similarly shared cluster and distribution param-

eters for structure sub-categories rs and camera distribution rc. The number of parts in the object

model is unknown a priori, making the model parameter set variably sized. For an object with M

sub-categories, we denote the number of parts in each object model as n = n1, . . . , nM . Since the

dimension of our model depends upon the number of parts, we denote the set of category model

parameters for one image

θ(n) = (c, s, t, rc, rs,n) . (1)

The camera parameters for an image are shared across the sub-categories. We could learn sub-

category camera parameters, but multiple structure motifs of an object typically are independent of

how they are viewed, e.g. chairs with armrests are similarly viewed as those without. Hence, we

label the parameters for a single image under the mth sub-category as a subset of θ(n),

θ(nm)
m = (c, sm, tm, rc, rsm, nm) , (2)

which has a shared camera and generating distribution.

Given a set of D images containing examples of the an object category, our goal is to learn the

model Θ(n) from their detected image features X = x1, . . . ,xD. In addition to category-level

parameters, Θ(n) comprises camera instances C = c1, . . . , cD for each image and structure part

parameters Sm = sm1, . . . , smD for the mth sub-category and each image. Our posterior over the

parameters then takes the form

p
(
Θ(n) |X

)
= p

(
X,Θ(n)

)
/

∫
p

(
X,Θ(n)

)
dΘ(n) . (3)

The integral behaves as a constant and is not computed; it is canceled out during our inference
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process, as we show. The joint density function over the features and parameters, however, is the

core of our inference and requires further attention.

Since instance parameters are bound to the feature data in each image, we separate the joint

density into a likelihood and prior as follows

p
(
X,Θ(n)

)
= p(n)(X,C,S, t, rc, rs,n) (4)

= p(n)(X,C,S | t, rc, rs) p(n)(t, rc, rs,n) , (5)

where we use the notation p(n)(·) to denote the nth sub-density function over a variably sized pa-

rameter set. Conditioned on the category parameters, our likelihood assume the D sets of image

features and instance parameters are independent,

p(n)(X,C,S | t, rc, rs) =
D∏

d=1

p(n)(xd, cd, sd | t, rc, rs) . (6)

This seems a fairly safe assumption; if two images contain examples of an object, then their par-

ticular appearances are typically independent. An exception to this assumption, however, includes

inadequately modeling sub-category structure variation within a class of objects.

From the independent sets of features and instance parameters in (6), we develop a likelihood

clustering model over sub-categories of object structure. The feature data and structure parameters

are generated by a sub-category cluster with weights and distribution defined by rs = (π, µs,Σs).

The camera is shared across clusters, however, and drawn from a distribution defined by rc =

(µc,Σc). We formalize the likelihood of an object, camera, and image features under M clusters

as

p(n)(xd, cd, sd | t, rc, rs)

=

M∑

m=1

πm p(nm)(xd | cd, smd)︸ ︷︷ ︸
Image

p(cd |µc,Σc)︸ ︷︷ ︸
Camera

p(nm)(smd | tm, µsm,Σsm)︸ ︷︷ ︸
Object

.
(7)
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We arrive at equation (7) by introducing a binary assignment vector z for each image feature set,

such that zm =1 if the mth cluster generated it and 0 otherwise. As the cluster assignments are not

actually known, we marginalize the likelihood (6) over all z, weighting each sub-category cluster

according to

πm = p(zm =1) . (8)

By assuming the feature set and instance parameters to be conditionally independent given the object

sub-category, we formally derive the likelihood clustering in (7) as follows

p(n)(x, c, s | t, rc, rs)

=
∑

z

p(n)(x, c, s, z | t, rc, rs) (9)

=
∑

z

M∏

m=1

p(n)(x, c, sm, zm | t, rc, rs)
zm (10)

=
M∑

m=1

p (zm =1 |πm) p(nm)(x | c, sm, tm) p(c | rc) p(nm)(sm | tm, rsm) . (11)

In this way, we define each independent component of our likelihood for a single image.

For the prior probability distribution over model parameters, we assume sub-category and param-

eter independence, where the topologies are conditionally independent given the number of parts in

the model. The prior in our posterior (5) then expands to

p(n)(t, rc, rs,n) = p(rc)
M∏

m=1

p(nm)(tm |nm) p(nm)(rsm) p(nm) . (12)

The parameters for camera and structure instances, rc and rs, are Gaussian distributed with hy-

perparameters empirically chosen from experiments using subsets of image categories with similar

topologies. The number of parts in the object sub-categories, n, is uniformly distributed. In the

following section focused on our object model, we describe the prior probability of a topology.

The joint density over image features and model parameters created from the likelihood (6) and
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Figure 1: Graphical model for our posterior joint density (4) defined over D sets of image features

X = x1, . . . ,xD and model parameters Θ(n) = (C,S, t, rc, rs,n).

prior (12) describes our generative model and Bayesian approach for learning 3D object structure

in images. Figure 1 shows the graphical version of this model and summarizes its parameter re-

lationships. In the next few sections, we detail the object, camera, and image components of our

likelihood and prior.

2.1. Object model

We have four basic types of structure parts: Individual blocks, symmetric pairs of blocks, sym-

metric quartets of blocks, and symmetric stacks of blocks.

The parameters of each block are assumed independent of the others conditioned on the sub-

category topology and part parameters.

Each block has three internal parameters for width, height, and length. It also has potentially two

external attachment parameters (u,v) for each face; we only allow one part to be attached to a face at

a time. Note that the parts with multiple blocks are specified with essentially one attachment, since

the other attachments are symmetric.

The blocks are positioned by in an object coordinate system defined by an origin o. An impor-

tant note that the location of blocks within this coordinate system is entirely defined by o and the

attachments points from one block to another. Thus, it does not seem necessary to have position in

object space of each block as a parameter; the object model is assumed connected.
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Figure 2: Object model

bind = (w, h, l ) (13)

bset = (w, h, l, dw, dl, τ) (14)

We constrain the blocks to be connected at right angles and centrally aligned, so the orientation

and position of the blocks, beyond attachment, are implicit determined from the object model. In

essence, the model is a stack of block and symmetric block sets, with block size and attachment

points being the main variables describing an instance. Figure 2 shows a couple example individual

and block sets and potential configurations. Despite its simplicity, this model can approximate a

surprising range of man made objects.

Combined with a y-axis rotation angle, ϕ, and position in R
3, a collection of blocks and block

sets comprise the structure of our object model

s(n1,n2) =
(
ϕ, x, y, z, b

(n1)
ind

, b
(n2)
set

)
, (15)

with b(n1) = (b1, . . . ,bn1) defined similarly for both types of blocks.

We specify the object model topology as a set of dependencies. For two blocks bi and bj con-

nected in the direction of their height, a topology parameter is defined as

tk =
(
i, j : bi

h
←→ bj

)
. (16)

Let t(n3) be a collection of topology constraints. Our object model o(n) =
(
s(n1,n2), t(n3)

)

combines the structure elements for individual objects and the topology, which is shared across

multiple instance of the the category. We denote the space over our object model as S
(n1,n2)×T

(n3).
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Figure 3: Camera parameters

2.2. Camera model

In the paradigm of learning about an object from a single view, the full specification of the camera

and the object position and scale leads to a redundant set of parameters. We choose a minimal set

for inference that retains full expressiveness as follows.

Without a priori information we are unable to distinguish the actual size of an object from its

distance to the camera. For this reason we constrain the camera to be at a fixed distance from the

world origin and accept knowing the size of an object up to a scaling factor. If at some point we

learn what the scaling factor is, we would be able to plug this in and know actual sizes and positions

of objects in the world.

We assume that objects of interest are variably positioned near the ground plane x, y and constrain

the camera to be always looking at the world origin. Because we allow the object to rotate around

its vertical axis, we only need to specify the camera altitude angle, ϑ. Thus we set the horizontal x-

coordinate of the camera in the world to zero and allow ϑ to be the only variable extrinsic parameter.

In other words, the position of the camera is constrained to a circular arc on the y, z-plane. See

Figure 3 for an illustration.

We further model the amount of perspective in the image from the camera by parameterizing its

focal length, f , and inferring it from the image. The focal length parameter strongly interacts with

the scale, s, of the objects in the world. However, it affects the convergence of parallel lines and

specifies a unique image. Our camera parameter vector is then given by

c = (ϑ, f, s) , (17)
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where ϑ ∈ [0, π/2], and f, s > 0. We refer to the space over our camera parameters as C.

2.3. Image model

We represent an image as a collection of detected feature sets that are statistically generated by

an instance of our object and camera. We model each of the image feature sets as arising from

a corresponding feature generator that depends on projected object information. For example, we

generate edge points from projected object contours and image foreground from colored surface

points. Figure 4 illustrates this representation of detected image features. Our likelihood over image

feature sets, conditioned on an object and camera model, captures the process by which features are

generated and measures how well a model explains their observations.

Given an object and camera, a feature generator stochastically produces the response of a detector

at every pixel of an image. Thus each pixel has a non-zero probability of a feature being generated

over it by the model, which we assume is independent from all other pixels’ chances, conditioned on

our model. This is a strong assumption, but the projected object model provides a good hint about

what features we expect to see in the image per pixel, so it seems warranted. Our image model is

then per pixel, and we compute the likelihood of a feature detector’s response per pixel given object

and camera information.

We formally define the likelihood of image feature sets as a product over per pixel observations.

For an image with Nx pixels, we assume independence, as previously mentioned, between per

pixel feature responses conditioned on the model. We further assume independence among the G

different types of generated features detectable in the image. For the dth image with feature sets

xd = xd1, . . . ,xdG, we expand the image component of equation (7) to

p(nm)(xd | cd, smd, tm) =
G∏

g=1

Nx∏

i=1

f
(nm)
θg (xdgi) . (18)

The function f
(nm)
θg (·) measures the likelihood of a feature generator producing the response of a

detector at each pixel using our object and camera models. The number of pixels per image, Nx, is

equivalent for all images in a category; hence, the number of potentially detected features in each
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image is the same. This is a simplification of our model in order to compare the likelihoods of one

image with another.

It may not necessarily be the case that the G detected feature sets are independent. As in the

pixel independence assumption, however, conditioning on the model provides a way to lessen [this

dependency] and simplify our model. We further observe that detected features of different types do

not always have [strong] dependencies. This is particularly true for edge and surface points. Since

edge points are located in surface regions of high color transition, and most surface color is not in

these regions, it is unlikely a strong dependency exists between a particular surface point and an

edge detection. For these reasons we believe it is reasonable to assume such independence.

Using our approach to the image likelihood, it is not difficult to model many different types

detectable features. We currently have chosen to model edge points and image foreground since

they are straightforward to extract from the image, provide a good representation of object part

structure and location, and are readily modeled by our object representation. As Figure 4 shows, the

projected object contours model detected edge points and colored surface points model the detected

image foreground. Our foreground representation is essentially a binary color indicating whether a

pixel contains a surface point in the foreground. We could easily extend this to account for more

color in the foreground surface points and add another feature generator to the image model. We

first describe how we model edge point generation followed by surface point generation.

Edge point generator

Image edge points occur at pixel locations where there is a large change in color relative to nearby

pixels. We model edge points as generated from discretized points along the projected 3D contours

of our object model. The object contours arise where two or more surfaces meet with different

orientation, each having potentially different color or shading. The projected object contour points

are positioned in a hypothesized model image and contain contour orientation information. This

representation is consistent with edges detected with gradient-based methods that give edge point

pixel locations and a gradient vector indicating edge orientation.

In addition to location and orientation, an edge detector indicates whether an image pixel contains
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Figure 4: Example of the generative image model for detected features. The top of the figure gives

a rendering of the object and camera models fit to the image at the bottom. The downward arrows

show the process of statistical generation of image features. The upward arrows are feature detection

in the image data.
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an edge point. Since the feature generator likelihood in (18) is computed over all detection responses

in an image, we define the edge generator likelihood as

Nx∏

i=1

fθ(xi) =

Nx∏

i=1

eθ(xi)
Ei · e′θ(xi)

(1−Ei) , (19)

where the probability density function eθ(·) gives the likelihood of detected edge point at the ith

pixel, and e′θ(·) is the density for pixel locations not containing an edge point. The two density

functions are selected per pixel by an indicator Ei, which is 1 if the pixel is an edge point and 0

otherwise. We have suppressed the generator index g and sub-density index (nm) notation.

The edge point density eθ(·) is defined over detected edges that have been generated by projected

contour points of the object model. For each edge point, suppose we know which projected model

point generated it. Then we assume the ith edge point generated from the jth model point has

some Gaussian distributed displacement dij in the perpendicular direction of the projected contour

containing the model point. We further assume the gradient direction of the generated edge point

has some Gaussian distributed angle difference φij with the perpendicular direction of the projected

contour. So we define the likelihood to be the product of two Gaussians, measuring the distance and

angular error, assuming independence. Let mj be the known model point to have generated xi, then

eθ(xi) = ce N (dij ; 0, σd) N (φij ; 0, σφ) (20)

where the perpendicular distance between xi and mj and angular difference between edge point

gradient gi and model contour perpendicular vj are defined

dij = ‖xi − mj ‖ (21)

φij = cos−1

(
gT

i vj

‖gi‖ ‖vj‖

)
. (22)

The range of dij is ≥ 0, and the angle φij is in [0, 1]; thus, the Gaussians are truncated and we

normalize their product with the constant ce.
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Pixels not containing an edge point still give an edge detection response from a nearby projected

model contour. Suppose we know the projected model point generating each of these non-edge

responses. Then we define the probability of an edge detection response xi that does not contain an

edge point as

e′θ(xi) = 1 −

∫

x′

i

eθ(x) dx , (23)

where x′
i is the space of all edge detection responses at the same pixel location as xi, but that

contain an edge point. That is, we define e′θ(xi) as the complement of the probability a model point

generates any detection response containing an edge point at the ith pixel.

Unfortunately, during model inference with actual detected edge points in an image, we do not

know the correspondence between hypothesized model points and the edge detection responses xi.

We could search for the most likely correspondence linking edge detection responses and model

points, but there are exponentially many of them. Instead, we build uncertainty into the point

correspondences by redefining the edge point generator density over several model points for each

edge point and develop an efficient approximation of its most likely correspondence.

We model an edge point with no correspondence information as generated by one of several

candidate model points, and assume that each model point generates at most one edge point. If

we detect an edge point at the ith pixel of an image, it is modeled as being generated by one of Ki

projected model contour points mk that are nearby. We simplify computing nearby point correspon-

dences by linking points on the hypothesized model contour to their closest image edge point in the

direction of the edge gradient. Creating this linkage based on the detected edge gradient instead of

the model contour perpendicular has some the practical advantages, including being able to quickly

find the candidate model points. This is accomplished as follows.

For each image edge point, we compute the distance along the edge gradient to points on the

projected model contours. Under the assumption that a model point generates at most one edge

point, we link a model point to its closest edge point using the computed distances. Each edge point

will then have a disjoint set of model points it is linked with. Figure 5 illustrates a simple example
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Figure 5: Example point correspondence resolution linking three projected model contours (solid)

with two edges (dashed) of an image object (shaded). For each edge point, a set of nearby model

points in the gradient direction is found and used in the edge density function (24). All points in (a)

are co-linear and parallel to the image gradients at x1 and x2. Distances between edge points and

model points along the gradient are computed in (b); the shaded distances, δ12 <δ11 <δ23, are the

smallest and labeled in (a). Model to edge point linkages are then made in (c) based on the closest

edge point. Final linking of nearby model point sets to each edge point is summarized in (d).

of this process. The model point set can be empty, however, due to no points along the edge gradient

or the distance being greater than a threshold. In this case, the edge point is not linked to any model

points and is considered noise.

Given a set of Ki linked model points, we redefine the density for an edge point xi in our gen-

erative image model. Since we do not know which of the model points actually generated the edge

point, we average across their Gaussian response of eq. (20) with equal weights. The edge density

function then becomes

ẽθ(xi) =
1

Ki

Ki∑

k=1

N
(
d̃ik; 0, σd

)
N (φik; 0, σφ) , (24)

where the perpendicular distance d̃ik from a model point is also redefined as
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Figure 6: Distance and angle representation of d̃23 and φ23 for the edge point x2 and model point

m3 in Figure 5. The point x̃2 is the generative approximation of x2 that is perpendicular to both the

projected model contour and gradient g2.

d̃ik = ‖ x̃i − mk ‖ . (25)

The point x̃i is the generative approximation of xi that is perpendicular to both the model contour

at mk and the gradient gi. If the edge point was found to be noise, however, due to no nearby model

points, a constant minimum likelihood value, enoise, is used instead. Figure 6 shows the details of

this calculation for one of the example edge points in Figure 5.

In addition to redefining the edge point density using point correspondence estimation, we ap-

proximate the probability of not detecting an edge point at a particular pixel, eq. (23), with con-

stants. We use a pair of probability constants for detection responses that are missing an edge point

or are image background with no edge point expected. Pixels not containing an edge point, but that

have the same image location as a projected model point, contribute a constant factor, emiss, to the

likelihood. However, only the Ki−1 furthest model points from the ith non-edge pixel contribute

this constant; one of the model contours is assumed to have generated an actual edge point. Model

points not linked to any edge point that have a detection response of no edge also contribute this con-

stant. For all other pixel locations with no detected edge points, we factor in a constant background

probability, ebg.

We combine the approximations of the edge and no-edge density functions to redefine the like-
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lihood for the edge point generator. Since detections not containing an edge point have constant

probability, it is unnecessary to know which of the model points are missing an edge point. We

only need to know how many there are, which we can easily compute by adding the number of

model points not linked to an edge point with
∑Nx

i=1(Ki − 1)Ei . This enables us to approximate the

generator likelihood (19) with

Nx∏

i=1

fθ(xi) ≈

{
Nx∏

i=1

ẽθ(xi)
Ei

}
e
Nbg

bg eNmiss
miss . (26)

where Nbg and Nmiss are the number of background and missing detection responses in the image,

and Nbg + Nmiss =
∑Nx

i=1 1 − Ei.

Our approach has some similarities to standard edge matching (e.g., [3, 14]), but we explain

the edge points as the result of a generative statistical process that accounts for both distance and

gradient direction. Using the Hausdorff distance for edges in our approach, for example, would

preclude our ability to link edge points to projected model contours for likelihood computation,

since no correspondences would be computed.

While the assumption that a model point can be assigned to at most one image edge point may

seem arbitrary, we have experimented with other assignment alternatives and found it to give the

best results. We have also experimented with different weightings in the average computed over

model points in eq. (24) and found uniform weights to work the best in the most cases.

Implementation detail: Much of the model and edge point linkage is easily precomputed at

program initialization for the input images. After detecting the edge points in each image, we

create a correspondence grid of potential model point distances and gradient angles with the same

dimensions and indexing as the image. The kth index in the grid stores the computed dik and

discretized set of φik for each of the edge points xi whose gradient traces through the kth point in

the grid. A discretized set of φik is computed because the orientation of the model contour is not

yet known. During learning and recognition, when the model contours are computed and projected,

we look-up the distance and gradient angle for each of the model points in the precomputed table.

Surface point generator
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Surface points are part of the projected object model and occur at image pixels that are part of the

foreground. We model these detected foreground pixels as the projected points of viewable surfaces

in our object model. Foreground pixels are detected in an image by applying the k-means algorithm

on pixel intensities, where k = 2. In most cases this gives a good estimate of the foreground because

the objects are already set on an almost white background. Figure 4 shows an example foreground

detection for an image.

Similar to the edge point generator, the surface detector gives a response at each pixel location.

We also have density functions for surface and non-surface points. Thus, we define the surface

generator likelihood as

Nx∏

i=1

f
(n)
θg (xgi) =

Nx∏

i=1

sθ(xi)
Si · s′θ(xi)

(1−Si). (27)

The per pixel indicator Si is 1 if the pixel contains a detected surface point in the foreground,

otherwise it is 0 and considered part of the background.

We define the density functions in terms of constant likelihoods for surface and non-surface

points. The decision for what type of constant to use is based on comparing the surface point

detection response at a pixel in the observed image and the corresponding projected object model

surface point in the same pixel location of a hypothesized model image.

We define the density function for detected surface points with two constants for foreground and

noise. If the pixel contains a detected surface point and shares a location with a projected model

surface point, then we say it is part of the foreground and contributes sfg. If the detected surface

point has no projected model surface point over it, we label it as noise and factor in snoise.

We define the density function for detected non-surface points also with two constants, but for

background and missing points. If the pixel does not contain detected surface point and has no

projected model surface points in the hypothesized image, then we say it is part of the background

and contributes sbg. If the pixel again does not contain a detected surface point, but has a projected

model surface point over it in the hypothesized image, we label it as missing a surface point in the

observed image with factor in smiss. Thus, the surface point generator likelihood expands to
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Nx∏

i=1

fθ(xi) = s
Nfg

fg s
Nbg

bg sNnoise
noise sNmiss

miss . (28)

where Nfg + Nbg + Nnoise + Nmiss = Nx.

3. Inference

We sample the posterior to find the best set of parameters that fit a set of images. Given enough

iterations, a good sampler converges to the target distribution and an optimal value would be readily

discovered in the process. However, our posterior distribution is highly convoluted with many sharp,

narrow ridges for close fits to the edge points and foreground. In our domain, as in many similar

problems, standard sampling techniques tend to get trapped in these local extrema for long periods

of time. Our strategy is to combine a mixture of sampling techniques with different strengths in

exploring the posterior distribution.

Our sampling space is over all camera parameters, internal object parameters and object topolo-

gies

Ω =
⋃

n∈N3

C
D × S

(n1,n2)D × T
(n3) , (29)

such that θ(n) ∈ Ω.

From a set of images, we formulate a posterior from the image likehood model and a prior

probability distribution,

p
(
θ(n) |X

)
= kp L

(
X |θ(n)

)
p

(
θ(n)

)
. (30)

Conditioned on the object topology, the structure and camera paramters are indepenent for each

image,

p
(
θ(n)

)
=

D∏

d=1

p(cd, sd |t) p(t) . (31)

Each of the parameters within the camera and structure components are modeled according to a

21



Gaussian distribution with large variance. The topology pieces are uniformly distributed.

3.1. Transdimensional sampling

The Metroplis-Hastings (MH) algorithm is an MCMC sampling technique to generate unbiased

and representative samples from a target distribution [21, 10, 23, 7, 2]. The central concept of

the algorithm is to propose samples from a distribution q(θ′ | θ), which can be easily sampled, and

accept or reject the samples with probability

α
(
θ̃(n)

)
= min

{
1,

p(θ̃(n) |X) q(θ(n) | θ̃(n))

p(θ(n) |X) q(θ̃(n) |θ(n))

}
(32)

Trans-dimensional changes in topology

α
(
θ̃(n+m)

)
= min

{
1,

p(θ̃(n+m) |X)

p(θ(n) |X) q(m)(b̃, t̃)

rd

rb
∣∣∣∣∣

∂(θ̃(n+m))

∂(θ(n), b̃, t̃)

∣∣∣∣∣

}
(33)

Since the sampler follows a Markov chain, and it maintains the detailed balance condition

it is sufficient that the sampler will have as its invariant the posterior, assuming there are no zero

probability transitions.

3.2. Stochastic Dynamics

We can use the negative log of the joint density over parameters and data to define a potential

energy function, which will be convenient during inference,

E(n) (θ) = − log L
(
X |θ(n)

)
− log p

(
θ(n)

)
(34)

Define a kinetic energy function over the introduced momentum K(n) (r) = 1
2

∑N
(n)
x

i=1 r2
i . The

total energy in phase space is the Hamiltonian
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H(n) (θ, r) = E(n) (θ) + K(n) (r) (35)

The canonical distrubution over phase space is given by

p(n) (θ, r) =
1

ZH
exp (−H (θ, r)) (36)

We’ll sample from the marginal distribution by sampling from the canonical and just ignoring

the momentum.

We’ll sample by following the Hamiltonian dynamics over time τ

dθi

dτ
= ri ,

dri

dτ
= −

∂E

∂θi
(37)

Total energy is conserved as we move through phase space. Dynamics additionally preserves

volume in phase space (Liouville’s theorem). Combining these two results, the invariant of the

dynamics over time is the canonical distrubution.

We discretize the dynamics with the standard leapfrog algorithm, where we update the momenta

and position each after every halfstep discretized time step. We transition from θ, r at time step τ

to θ̃, r̃ at time step τ + ǫ by doing a half update to the momenta ri(τ + ǫ/2), and full update to the

position variable θi(τ + ǫ) and another half update of the momenta ri(τ + ǫ), where

r̃i (τ + ǫ/2) = ri(τ) −
ǫ

2

∂E (θi(τ))

∂θi
(38)

θ̃i(τ + ǫ) = θi(τ) + ǫ r̃i(τ + ǫ/2) (39)

Introduce stochastic transitions to have the sampler ergodically sample from the canonical distru-

bution and transition to states of different total energy. We use the following stochastic transitions

r̃i = αri + (1 − α2)1/2 ηi (40)
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4. Results

We evaluated our sampling strategy and models by inferring them on a set of 32 table images. The

edges in all the images were detected with the same parametrization, resulting in many edge points

that could be considered noise, or in some cases, missing from major portions of table structure.

The fitting process for each image was initialized from a different random state drawn from our

fairly uninformative prior.

We cycled through each of the Langevin, covariance scaled Metropolis-Hastings and hyper-

dynamics samplers five times, with most obtaining a good fit after just a couple of cycles. The

Langevin and Metropolis-Hastings samplers were run for 10K iterations during each cycle, this

was followed by 50 iterations of hyperdynamics. The hyperdynamics sampler takes a significantly

longer time for sample generation due to the complex numerical approximations that must be calcu-

ated for the bias function. However, 50 iterations was often enough to position the model parameters

at a transition point so a new state could be reached.

As shown in Fig. 7, we accurately fit most of the table and camera models to the images. The

same for Fig. 8. If we continue to run the sampler, we believe that good fit would eventually be

found for all. The image in the top left corner of Fig. 7 is particularly interesting because of the

poor edge detection that occurred. We observe from this fit that even though a substantial number

of edge points are noise, nearly half the table surface edge points are missing, and the back leg has

no detection at all, we are still able to make a somewhat accurate fit to this image.

As we stated in the introduction, our overall goal is to learn the form of general 3D structure

models for objects. We believe that the novel inference process we have presented in this paper is

a good first step on a trajectory to learning structure models. To some extent we can already reason

about the structure of tables; we have fit a highly configurable model and can now consider the

statistics of such a model after fitting it to a collection of images. We plan to do the same for other

objects, in a less specified way, to learn how to discriminate between various classes of structures

that share parts and appear similar.
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Figure 7: Learning the topology of simple furniture objects. Sets of contiguous blocks were fit

across two small data sets—one consisting of eight tables and one consisting of eight chairs. Model

fitting is done jointly for the eight images of each set. The topology (how many blocks there are

and how they connect) was constrained to be the same over all exemplars in a given set whereas

the camera parameters and the instance parameters (block position and size) were modulated across

the exemplars. The location of the edge points in the image is only softly fit to the model edges

(shown in red) to account for the deformation from a parallelepiped (note the legs of the upper right

table). While the quality of individual fits naturally varies across examples (these are relatively

good results), the main point is that in both cases the system learned, from the same starting point,

a serviceable topology for the category represented by the collections of instances.
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Figure 8: Learned topology and instance parameters for a chair object.
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5. Conclusion

The main goal of this work was to develop an approach for learning strong 3D models, with un-

known topologies, from single 2D images. In particular, we are working with models that represent

objects as 3D assemblages of sub-structures that we assume to be effective way to represent a range

of objects for a variety of vision task. A key technical challenge for learning such models from

single 2D views was streamlining the inference so that model hypotheses can be explored relatively

quickly. A second key challenge addressed in this work was to arrange an image model that sta-

tistically explains every image pixel to effectively mitigate against biases for more or less complex

models, and explaining more or less of the image. Dealing with these two challenges allowed viable

topologies to emerge that are consistent with multiple images of objects from the same category.

We have developed the approach in a relatively simple domain, but the methods can be extended

to more general configurations (relaxing the right angle assumption), and a larger palate of more

deformable parts. Further it will be relatively easy to take structure learned for a category, and then

split it into clusters, allowing different related topologies to be learned to encode different ways

of being a particular object (e.g., chairs with and without backs). Finally, learning more about the

statistics of the individual parts in a particular topology will be helpful, especially as we expand the

number of categories.
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