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Abstract

We decided to test a surprisingly simple hypothesis; nartiedy the relationshipetween anmage of a scene and
the chromaticity ofsceneillumination could be learned by aeural network. The thougmtasthat if this relationship
could be extracted byreural networkthen the trainedietwork would be able tdetermine a scene's illuminatiémom
its image, whichwould then allow correction ofthe imagecolors to those relative to standard illuminantthereby
providing color constancy. Using a database of surface reflectande#luminants, along with thepectral sensitivity
functions of our camera, we generated thousands of images of rarsllediedlluminants lighting scenes' of 1 to 60
randomly selected reflectanceluring the learning phase theetwork is providedthe image data along with the
chromaticity of its illuminant. After training, the network outputs (very quickly) the chromaticity of the illumination given
only the image data. We obtained surprisingly good estimates of the ambient illumination lfgirtindpe networleven
when applied to scenes in our lab that were completely unrelated to the training data.

Descriptive Summary

Existing color constancyalgorithmst 2 Bl [4. [9. 6. 8 - generallyemploy assumptions abouither thesurface
reflectanceghatwill occur in a scene or abotlie possible spectral power distributions of scéheninants. Given the
assumptionsaand 3-band image data (either CDEYZ specification orcameraRGB) these algorithms calculate the
chromaticity of the unknowsceneillumination. If the assumptions amatisfied —which generally thegre not — the
estimate of the illumination will be correahd can then besed to adjusthe image data sthat theimagewould be the
same as ihad beentaken undesomestandard, known illuminant. To the extehat theadjusted colorare asthey
would have been under the standard illuminant, the system can be said to exhibit “color constancy'.

In contrast, the neural network we halevelopechas no built-in constraints. It is aulaptive modethat makes no
explicit assumptions abotte input data. All rules are implicitly learné@m thetraining set, which contains a large
number of (artificially generated) scenekhe experimental resul{see below) showhat the neurahetwork outperforms
the grey-worldandwhite-patch algorithmsespecially inthe case of scenesontaining a small number (1 to 5) of distinct
RGB measurements (Since ‘color' is a perceptual quality, in fothetvs we'll avoidusing it and insteasimply use RGB
to mean the response of the camera at a given p@ebd performance withonly a small number of distincRGB's
means that thaeetwork is particularly well suited for processiagall, local image regiondhis is importantecause
generally a scene contains méianone source dight, so the assumptidinat thescenellumination is constant will, at
best, hold true only locally within an image.



Neural Network's Input and Output

The neural network's inpldwyer consists of a large number (up to 5000 in one test) binary inputs representing the
chromaticity of the RGBs present in the scene.

Each imageRGB from a scene is transformedto an rg chromaticity space: r=R/(R+G+8hd g=G/(R+G+B).
Thus all possible RGB's willmap to rg chromaticities inside a triangle havisides ofunit length. Thisspace is
uniformly sampled with a step S, #soat all chromaticities within the same sampling square of size S are taken as
equivalent. Each sampling square maps to a distinct network input “neuron’. The input neuron is set either to 0 indicating
that anRGB of chromaticity rg is not present in the scene, or 1 indicatiag rg is present. Thidiscretization has the
disadvantage that it forgoes some of the resolution in chromaticity due to the sampling, but on thenatitgrovides a
permutation-independent input to the neural net. This aspect is very important because it reduces the size of the input data
set (at the cost of a large input layer).

The outputlayer ofthe neural networlproducesthe values rand g (in thechromaticity space) ahe illuminant.
These values are reals ranging from 0 to 1.

Neural Network Architecture

The neural network wased is a Perceptrdf with one hidden layer. The firsayer is usually largand the input
valuesare binary (0 or 1), adescribed abova.he larger the layer, thaetter the chromaticity resolution, buvery large
layercan lead to a huge increase in ttaning time. Wehave made experiments with an infayer of sizes 256, 512,
1250 and 5000 with comparable color constancy results in all cases.

The color-correction experiments descrideelow weredone with annput layer of size 1250, which corresponds to
a sampling step of 0.020 . The hiddayerhas a much smaller sizesually about 16-32 neuroasid theoutput layer is
composed of only two neurons. The training method tvad3ack-propagation algorithm, without momerttdmDuring
the training, the illuminanthromaticity is also provided tthe neural network. The error functiovas the Euclidean
distance in the chromaticity space between the network’s estimate of the illuminant chromaticity and its true chromaticity.

Experimental Results and Comparisons

The networkwastrained with a large number synthesized scenes, each witraadom set of from 1 to 68urface
reflectances. Thdluminant database contains the specipalwer distributions of 89 differerituminants, thatwere
measured with a Photoresearch PR650 spectrophotometer at different gnleced the university campus. The
reflectance database contathe percent spectra¢flectance functions obtained from 368 different surfabesing the
training phasefor eachilluminant, the number adcenes used usualignged from 10 to 1000. Theweas no noticeable
improvement in the behavior of the neural network, when trained on a very large training set.

The number of trainingpdchs was kept relativelgmall, partlybecause othe large amount (cpu hours)todining
time. Itwas also a function dhe size of thdraining set. The networkised for these experimeritad an inpusize of
1250 neurons, 32 hidden neurons and 2 output neurons. The training set was composed of 8900 scenes (i.e. 100 scenes fo
each illuminantgndeach scenbad a random number oblorsrangingfrom 1 to 60. The netwonkwastrainedfor 120
epochs. Aftetthe trainingprocess was completethe average error (i.e. Euclidean distance in the chromasipéyge
between the target output and the output obtained by the neural network) was 0.018608 .

After training was completed, the networkwas tested on a different set of scenes. Scenes were generated by
randomly selecting 1, 2, 3, 5 or 10 surface reflectances. For each of these cases 1Meseareated.The average
error obtained by the neural network for 100 scenes for each number of distinct reflectances is compared iandables |
to thatobtained by three otherolor constancyalgorithms: white-patch algorithngrey-world algorithm and the 2D
convex hull gamut mapping algoritHth with and without illumination constraints included.



The grey-world algorithm assumethat theaverage ofll colors in an image is grey.e. the red, green artaue
components of the averagelor are equal. The amount the image average defrartsgrey determinethe illuminant
RGB. The white-patch algorithm, which is at the heartmafny of the various retin€ algorithms, presumesat in
everyimage there will besome surface or surfaces sublat therewill be a point or points of maximakflectance for
each of the R, Gand Bbands. The 2@onvexhull gamut mapping algorithroonsiders the set @ossibleilluminants
thatcouldmap theobservedyamut of imagdRGB’s to acanonical gamut aéxpected possible RGBimder the standard,
known illuminant. We do not include comparisons with Maoney-Wandelf! algorithmbecause ihaspreviously been
demonstratéd that it works worse than these other algorithms.

The error measures used in Tables | and Il are the angular error and the root mean square angulartesror is
computed by convertinthe rg chromaticities of the illumination’s true chromatiatyd itsestimated chromaticity to 3-
vectors and then measuring the angle betweetwiv@ectors. For theRMS error the chromaticities of all tteurfaces in
the sceneare corrected orthe basis of each algorithm’s illumination estimat&€his yields animage as the algorithm
would expect it to beinder the standard illuminant. Théference betweethe true chromaticities under the standard
illuminant and those estimated by the algorithm is measured by the RMS error taken over all surfaces in the scene.

Number of 1 1 2 2 3 3 5 5 10 10

Surfaces.

Error mean stdev | mean stdev| mean stdev] mean st de mean st dgv

Minimum 0.908 0.0 0.908 0.0 0.908 0.000 0.904 0.000 0.908 0.000

attainable error

using 2D diagonal

model.

Grey World 22.23 12.00 16.17 8.946 12.87 7.759 9.341 5.6D4 7.112 3[764

White Patch 22.23 12.00 16.93 9.542 14.02 8.910 8.887 5.824 6.871 4|558

Gamut Mapping: | 33.64 15.96 23.41 13.65 16.33 12.09 12.61 9.460 7.881 5.346

surfaces only.

Gamut Mapping: | 8.051 2.812 7.525 3.350 6.501 2.914 5.918 3.254 4746 2.281

surfaces plus

illumination.

Neural Net 13.05 3.345 10.40 4.245 8.20% 4,291 6.184 3.502 4,902 21833
Table I: Angular Error Predicting White Under Canonical

Number of Surfaces| 1 1 2 2 3 3 5 5 10 10

Error mean st dv mean st dv meap st dy mean st dv mean st dv

No Color Correction| 1.072| 0.000 1.072 0.000 1.0f7 0.00 1.7 0.00 1.07 0.000

Minimum attainable| 0.126 | 0.000 | 0.126| 0.000 0.12 0.00 0.12 0.0( 0.1p 0.000

error using 2D

diagonal model.

Greyworld 2511 | 5.102 | 1.096| 0.916 0.88 0.90 0.56 0.3( 0.45 0.206

WhitePatch 2511 | 5.102| 1.147 0.97¢ 0.96 1.00 0.5¢ .33 0.43 0.241

Gamut Mapping: 20.13 | 51.11 | 3.545| 5.686 1.80 2.88 1.02 1.1% 0.52 0.500

surfaces only.

Gamut Mapping: 0.499 | 0.144 | 0.466| 0.178 0.41 0.15 0.38 0.17 0.31 0.130

surfaces and

illumination.

Neural Net 0.758 | 0.157| 0.628 0.204 0.51 0.22 0.40 0.18 0.32 0.165

Table II: RMS Chromaticity Mapping Error



Conclusion

We have shown that color constancy can be learned by a standard neural netwouksé&€the disadvantage of the
neural network approach tkat there is navay toknow exactlywhat it is that thenetwork learned. The neunaétwork
performs substantially better than the white-patctgrey-worldalgorithms orscenes with a limited number of different
surfaces. Of course, dse number ofsurfaces increasese probability of fufilling the grey-world and white-patch
assumptions growandthey begin to work betterThe neural net performsetterthan thegamut mapping algorithm
when it is allowed to use ontye constraints arisinfjom knowledge othe possiblegamut of surface reflectances; and
almost as well athe gamut mapping algorithm when it @lowed to usethe additional constraintprovided by
knowledge of possible gamut of illuminant spectra.
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