MGRAPH

Ariyan Zare

Background and Motivation The Gantry and Large Scale Mosaicking Drone Images: The More General Case

Challenges

Image Stitching Short Review

Pairwise Transformations

MGRAPH Method for Large Scale Image Stitching

Non-linear Least Squares Optimization

Use Non-linear Least Squares to Minimize Reprojection Error

Using Non-linear Least Squares for Minimizing the Reprojection Error in Image Stitching

Ariyan Zarei

University of Arizona

ariyanzarei@email.arizona.edu

October 26, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Overview

MGRAPH

Ariyan Zare

Background and Motivation

Large Scale Mosaicking

Drone Images: The More General Case

Image Stitching Short Review

Pairwise Transformations

MGRAPH Method for Large Scale Image Stitching

Non-linear Least Squares Optimization

Use Non-linear Least Squares to Minimize Reprojection Error

1 Background and Motivation

- The Gantry and Large Scale Mosaicking
- Drone Images: The More General Case
- Challenges

2 Image Stitching Short Review

Pairwise Transformations

3 MGRAPH Method for Large Scale Image Stitching

- Non-linear Least Squares Optimization
- Use Non-linear Least Squares to Minimize Reprojection Error

・ロト・日本・日本・日本・日本・日本

Background and Motivation

and

Background and Motivation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

MGRAPH

Ariyan Zarei

Background and Motivation

The Gantry and Large Scale Mosaicking

Drone Images: Th More General Case

Image Stitching Short Review

Pairwise Transformation

MGRAPH Method for Large Scale Image Stitching

Non-linear Least Squares Optimization

Use Non-linear Least Squares to Minimize Reprojection Error

World's Largest High-throughput Phenotyping Machine

・ロト ・四ト ・ヨト ・ヨト ・ヨ

The video

MGRAPH

Ariyan Zare

- Background and Motivation
- The Gantry and Large Scale Mosaicking
- Drone Images: The More General Case
- Image Stitching Short Review
- Pairwise Transformations

MGRAPH Method for Large Scale Image Stitching

- Non-linear Least Squares Optimization
- Use Non-linear Least Squares to Minimize Reprojection Error

- Phenotype: the set of observable characteristics of an individual resulting from the interaction of its genotype with the environment.
- Genotype: the genetic constitution of an individual organism.
- The Goal of the Project is to find genes that makes individual plants to have a specific characteristics, i.e. Drought Resistant.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

MGRAPH

Ariyan Zare

Background and Motivation

The Gantry and Large Scale Mosaicking

Drone Images: The More General Case

Image Stitching Short Review

Pairwise Transformation

MGRAPH Method for Large Scale Image Stitching

Non-linear Least Squares Optimization

Use Non-linear Least Squares to Minimize Reprojection Error

The Gantry:

- 2 Acres of land
- Half a dozen sensors
 - RGB cameras (0.3 mm per pixel)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- PS II for Photosynthesis
- FLIR / Thermal Camera
- Hyper Spectral Camera
- 3D Laser Scanner

MGRAPH

Ariyan Zare

Background and Motivation

The Gantry and Large Scale Mosaicking

Drone Images: The More General Case

Image Stitching Short Review

Pairwise Transformations

MGRAPH Method for Large Scale Image Stitching

Non-linear Least Squares Optimization

Use Non-linear Least Squares to Minimize Reprojection Error

- Gantry moves N to S and E to W
- Heavy metals and magnetic fields on the machine
- Relative Coordinate System: Barcodes on rails
- Conversion to GPS is noisy
- Wind causes displacement of the camera box

Resulting GPS is not enough for stitching images.

Estimate pairwise transformations (translation is enough in many cases)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Correct GPS coordinates (geo-correction)

Drone Images: The More General Case

MGRAPH

Ariyan Zare

Background and Motivation

The Gantry and Large Scale Mosaicking

Drone Images: The More General Case

Challenges

Image Stitching Short Review

Pairwise Transformation

MGRAPH Method for Large Scale Image Stitching

Non-linear Least Squares Optimization

Use Non-linear Least Squares to Minimize Reprojection Error

- Drone is used more often
- More general and distinct features
- Challenge: transformation is not only translation.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Rotation
- Scale
- Tilting

Consistency: Important in Large Scale Mosaicking

MGRAPH

Ariyan Zarei

- Background and Motivation
- Large Scale Mosaicking
- Drone Images: The More General Case

Challenges

- Image Stitching Short Review
- Pairwise Transformation

MGRAPH Method for Large Scale Image Stitching

- Non-linear Least Squares Optimization
- Use Non-linear Least Squares to Minimize Reprojection Error

- Pairwise image stitching has beaten to death
- Multi image stitching is more interesting
- Challenges
 - Minor error can propagate throughout the mosaic
 - Drift and inconsistency
- Old approach for multi image stitching in the literature
 - Iterative stitching: drift can cause huge inconsistency

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Speed and Performance: Another Challenge in Large Scale Mosaicking

MGRAPH

Ariyan Zare

Background and Motivation

Large Scale Mosaicking

Drone Images: The More General Case

Challenges

Image Stitching Short Review

Pairwise Transformations

MGRAPH Method for Large Scale Image Stitching

Non-linear Least Squares Optimization

Use Non-linear Least Squares to Minimize Reprojection Error

Better approach

 Optimize pairwise transformations to minimize a score (projection error)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Non linear and slow procedure

My Goal: Linear Method for Minimizing the Drift Error

MGRAPH

Ariyan Zare

Background and Motivation The Gantry and

Large Scale Mosaicking

Drone Images: The More General Case

Challenges

Image Stitching Short Review

Pairwise Transformation

MGRAPH Method for Large Scale Image Stitching

Non-linear Least Squares Optimization

Use Non-linear Least Squares to Minimize Reprojection Error

My goals

- Control the drift
- Speed up the process
- Proposed method works perfectly for the gantry
- Make it a general method for other applications
- This presentation
 - Discuss one of the methods in the literature
 - Illustrate the challenges of the mostly used approach

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Image Stitching Short Review

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

MGRAPH

Ariyan Zare

Background and Motivation

The Gantry and Large Scale Mosaicking

Drone Images: The More General Case

Image Stitching Short Reviev

Pairwise Transformations

MGRAPH Method for Large Scale Image Stitching

Non-linear Least Squares Optimization

Use Non-linear Least Squares to Minimize Reprojection Error Four famous geometric transformations:

- Translation
- Similarity
- Affine
- Homography

Use Non-linear Leas Squares to Minimize Reprojection Error

MGRAPH

Ariyan Zarei

- Background and Motivation The Gantry and Large Scale Mosaicking
- More General Case
- Image Stitching Short Review
- Pairwise Transformations
- MGRAPH Method for Large Scale Image Stitching
- Non-linear Least Squares Optimization
- Use Non-linear Least Squares to Minimize Reprojection Error

Affine and Homography

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Estimating Pairwise Transformation using SIFT Key point Matching

MGRAPH

Ariyan Zare

Background and Motivation

The Gantry an Large Scale Mosaicking

Drone Images: The More General Case

Image Stitching Short Review

Pairwise Transformations

MGRAPH Method for Large Scale Image Stitching

Non-linear Least Squares Optimization

Use Non-linear Least Squares to Minimize Reprojection Error Stitch two images

- Find important visual keypoints in each image (SIFT/SURF)
- Match the keypoints based on their descriptor (KNN)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Estimate the desired transformation (RANSAC)

Estimating Pairwise Transformation using SIFT Key point Matching

MGRAPH

Ariyan Zare

Background and Motivation The Gantry and Large Scale Mosaicking

Drone Images: Th More General Casi Challenges

Image Stitching Short Review

Pairwise Transformations

MGRAPH Method for Large Scale Image Stitching

Non-linear Least Squares Optimization

Use Non-linear Least Squares to Minimize Reprojection Error

●●● Ⅲ → Ⅲ → Ⅲ → ■ → ●●●

MGRAPH Method for Large Scale Image Stitching

э

Creating a GRAPH of Image Adjacency

MGRAPH

Ariyan Zare

Background and Motivation The Gantry and Large Scale

Drone Images: The More General Case

Challenges

Image Stitching Short Review

Pairwise Transformations

MGRAPH Method for Large Scale Image Stitching

Non-linear Least Squares Optimization

Use Non-linear Least Squares to Minimize Reprojection Error

- Works on Drone images (swarm of drones)
- Estimate pairwise transformation for each image and its neighbor
- Form a Graph that represents the adjacencies between images (build it on the go)
- Merge and split the graph as needed (weak and strong edges)
- Extract a minimum spanning tree from this graph
- Calculate absolute homographies w.r.t the root (reference)
- Minimize the reprojection error
- Use absolute homographies to warp and stitch the images

Reference Points and Absolute Homographies

MGRAPH

Ariyan Zare

Background and Motivation The Gantry and Large Scale Mosaicking Drone Images: The More General Case

Image Stitching Short Review

Pairwise Transformation

MGRAPH Method for Large Scale Image Stitching

Non-linear Least Squares Optimization

Use Non-linear Leas Squares to Minimize Reprojection Error

Matches between image i and j

$$M_{ij} = \langle p_i, p_j \rangle$$

Pairwise Homography (similarity in their case)

$$p_i pprox H^{ij} p_j$$

Absolute Homographies

$$H^{iR} = H^{ij} H^{jR}$$

-

Takes a point from coordinate system of R to the coordinate system of i

Reprojection Error using Absolute Homographies

MGRAPH

Ariyan Zare

Background and Motivation The Gantry and Large Scale Mosaicking Drone Images: The More General Case

Challenges

Image Stitching Short Reviev

Pairwise Transformations

MGRAPH Method for Large Scale Image Stitching

Non-linear Least Squares Optimization

Use Non-linear Least Squares to Minimize Reprojection Error

Projection error

$$r=p_i-H^{ij}p_j$$

 Using the underlying graph, the absolute homographies and SIFT matching form the following optimization function (reprojection error)

$$\sum_{i}\sum_{j}\sum_{p\in\mathcal{M}_{ij}}d(p_i,H^{iR}(H^{jR})^{-1}p_j)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Non-linear Least Squares Optimization

MGRAPH

Ariyan Zare

Background and Motivation The Gantry and Large Scale

Drone Images: The More General Case

Image Stitching Short Review

Pairwise Transformation

MGRAPH Method for Large Scale Image Stitching

Non-linear Least Squares Optimization

Use Non-linear Least Squares to Minimize Reprojection Error Minimize the reprojection error for parameters of absolute homographies

$$\sum_i \sum_j \sum_{p \in \mathcal{M}_{ij}} d(p_i, H^{iR}(H^{jR})^{-1}p_j)$$

Because of the multiplication of the two H and the inverse this method is a Non-linear least squares (the function d).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Non-linear Least Squares Optimization

MGRAPH

Ariyan Zare

Background and Motivation The Gantry and Large Scale Mosaicking Drone Images: The More General Case

Challenges

Image Stitching Short Review

Pairwise Transformation:

MGRAPH Method for Large Scale Image Stitching

Non-linear Least Squares Optimization

Use Non-linear Least Squares to Minimize Reprojection Error Non-linear least squares:

$$rgmin_{ heta} S = \sum_{i=1}^m r_i^2$$

$$r_i = y_i - f(x_i, \theta)$$

In our case:

- p_i s and p_j s are in accordance x_i s and y_i s.
- H_{iR} s are in accordance to θ and f is $H^{iR}(H^{jR})^{-1}p_j$.
- *d* is the squared of the residual or the euclidean distance.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Non-linear Least Squares Optimization

MGRAPH

Ariyan Zare

Background and Motivation The Gantry and Large Scale Mosaicking Drone Images: The More General Case Challenges

Image Stitching Short Review

Pairwise Transformation

MGRAPH Method for Large Scale Image Stitching

Non-linear Least Squares Optimization

Use Non-linear Least Squares to Minimize Reprojection Error Non-linear Least Squares

$$\arg\min_{\theta} S = \sum_{i=1}^{m} (y_i - f(x_i, \theta))^2$$

(日本)(同本)(日本)(日本)(日本)

- Available methods to optimize
 - GaussNewton method
 - LevenbergMarquardt algorithm
 - QR decomposition
 - Singular Value Decomposition
 - Gradient Methods

Use Non-linear Least Squares to Minimize Reprojection Error

MGRAPH

Ariyan Zare

- Background and Motivation The Gantry and Large Scale Mosaicking
- Drone Images: The More General Case
- Challenges
- Image Stitching Short Review

Pairwise Transformations

MGRAPH Method for Large Scale Image Stitching

Non-linear Least Squares Optimization

Use Non-linear Least Squares to Minimize Reprojection Error

- Two libraries for Non-Linear Least Squares optimizer
 - Python Scipy Non-Linear Least Squares optimizer
 - Uses QR method
 - Form Jacobian and decompose it to QR.
 - Form system of equations and solve for parameters
 - C++ Ceres
 - Uses Levenberg-Marquardt algorithm
 - Remember LMA interpolates between the GaussNewton algorithm gradient descent method.
 - Calling a C++ function from python (wrapper for Ceres) not successful so far.

 Non-linear optimization is usually slow and inaccurate in some cases.

Results

Method for Large Scale Image Stitching

Non-linear Least Squares Optimization

Use Non-linear Least Squares to Minimize Reprojection Error

Results

Results

MGRAPH

Ariyan Zare

Background and Motivation The Gantry and Large Scale Mosaicking Drone Images: The More General Case

Image Stitching Short Review

Pairwise Transformations

MGRAPH Method for Large Scale Image Stitching

Non-linear Least Squares Optimization

Use Non-linear Least Squares to Minimize Reprojection Error

Gantry Ortho

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 ▲

The End

MGRAPH

Ariyan Zare

Background and Motivation The Gantry and

Large Scale Mosaicking Drone Images: T

More General Cas

Image Stitching Short Review

Pairwise Transformations

MGRAPH Method for Large Scale Image Stitching

Non-linear Least Squares Optimization

Use Non-linear Least Squares to Minimize Reprojection Error

Thank you Very much for you attention.

I will upload the slide to my homepage at http://vision.cs.arizona.edu/ariyanzarei/

・ロット (雪) ・ (日) ・ (日) ・ (日)