A Comparison Between Different Approaches of Solving Nonlinear Least Squares in the Case of Bundle Adjustment

Ariyan Zarei

University of Arizona
ariyanzarei@email.arizona.edu
December 9, 2020

Overview

2 MegaStitch and Bundle Adjustment
1 Bundle Adjustment Review

3 Comparing Optimization Approaches and Parameters

Bundle Adjustment Review

Bundle Adjustment Review

Visual Reconstruction and Bundle Adjustment

MGRAPH

Ariyan Zarei

Bundle
Adjustment Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and
Parameters

Definitions

■ Visual Reconstruction: Recover a model of a 3D scene from multiple images.
■ Scene Model: Collection of isolated 3D features, e.g., points, lines, etc.
■ Bundle Adjustment: Problem of refining a visual reconstruction model to produce jointly optimal 3D structure and viewing parameter (camera pose/calibration) estimates.
■ jointly: Solution is simultaneously optimal with respect to both structure and camera variations.
■ optimal: Parameter estimates are found by minimizing some cost function that quantifies the model fitting error.

- Bundle in the name refers to the bundles of light rays leaving each 3D feature and converging on each camera center.

Bundle Adjustment for Image Stitching

MGRAPH
Ariyan Zarei

Bundle
Adjustment Review

MegaStitch
and Bundle
Adjustment
Comparing
Optimization
Approaches
and
Parameters

■ Bundle Adjustment from Brown and Low paper (projection error)
■ Minimizing Projection Error

$$
\begin{gathered}
e=\sum_{i=1}^{n} \sum_{j \in I(i)} \sum_{k \in K(i, j)} h\left(r_{i j}^{k}\right) \\
r_{i j}^{k}=u_{i}^{k}-H_{i j} u_{j}^{k}
\end{gathered}
$$

MegaStitch and Bundle Adjustment

MegaStitch and Bundle Adjustment

MegaStitch

Bundle
Adjustment Review

MegaStitch
and Bundle Adjustment

Comparing Optimization Approaches and
Parameters

■ Large scale image stitching method

- Prevent drift and inconsistency
- Include all available sources of information

■ Can be used on Drone and Gantry images

- Translation/Similarity/Affine
- Linear Least Squares
- Proposed a new approach of bundle adjustment

■ Can be used on other dataset with Homography

- Nonlinear Least Squares
- Main point of this presentation

MegaStitch, Bundle Adjustment for Homography case

- Consider a reference image

■ We estimate absolute Homographies between each image and the reference image

- Bundle Adjustment

$$
\begin{gathered}
e=p+\sum_{i=1}^{n} \sum_{j \in I(i)} \sum_{k \in K(i, j)} r_{i j}^{k} \\
r_{i j}^{k}=\sqrt{\left(u_{i r}^{k}[x]-u_{j r}^{k}[x]\right)^{2}+\left(u_{i r}^{k}[y]-u_{j r}^{k}[y]\right)^{2}} \\
u_{i r}^{k}[x]=\frac{H_{i}^{1} u_{i}^{k}}{H_{i}^{3} u_{i}^{k}}, \quad u_{i r}^{k}[y]=\frac{H_{i}^{2} u_{i}^{k}}{H_{i}^{3} u_{i}^{k}}
\end{gathered}
$$

■ p is a penalty term that enforces $H_{r}=I$ (for the reference image).

MegaStitch, Bundle Adjustment for Homography case

$$
r_{i j}^{k}=\sqrt{\left(u_{i r}^{k}[x]-u_{j r}^{k}[x]\right)^{2}+\left(u_{i r}^{k}[y]-u_{j r}^{k}[y]\right)^{2}}
$$

$$
u_{i r}^{k}[x]=\frac{H_{i}^{1} u_{i}^{k}}{H_{i}^{3} u_{i}^{k}}, \quad u_{i r}^{k}[y]=\frac{H_{i}^{2} u_{i}^{k}}{H_{i}^{3} u_{i}^{k}}
$$

■ H_{i}^{1} : the first row of homography matrix for image i (these are the parameters).

- u_{i}^{k} : location of the keypoint k in image i.
- $u_{i r}^{k}$: projected keypoint k from image i into the reference image.

Solving Nonlinear Least Squares

Python Scipy

- leastsq function: unconstrained nonlinear least squares solver.
- callable function that calculates the residuals
- starting point
- optional callable function that calculates the jacobians
- wrapper around the MINIPACK's Imdif and Imder functions (Fortran)
- Levenberg-Marquardt algorithm

Solving Nonlinear Least Squares

- least_squares function: nonlinear least squares solver with bounds on variables (newer).
- callable function that calculates the residuals
- starting point
- method for estimating the jacobians: 2-point, 3-point or optional callable function that calculates the jacobians
- minimization method

■ trf: Trust Region Reflective algorithm, large sparse problems with bounds.
■ dogbox: dogleg algorithm with rectangular trust regions, small problems with bounds.
■ Im : Levenberg-Marquardt algorithm as implemented in MINPACK, small unconstrained problems.

Comparing Optimization Approaches and Parameters

Comparing Optimization Approaches and Parameters

Comparing Optimization Approaches

- Comparing the effect of calculating vs estimating (2 cases) the jacobians using the two mentioned functions on
- Speed
- Accuracy

Jacobian Matrix

■ Partial Derivative of each residual with respect to each variable

$$
J=\frac{\partial r}{\partial H}=\left[\begin{array}{cccc}
\frac{\partial r_{1}}{\partial H_{1}} & \frac{\partial r_{1}}{\partial H_{2}} & \cdots & \frac{\partial r_{1}}{\partial H_{n}} \\
\frac{\partial r_{2}}{\partial H_{1}} & \frac{\partial r_{2}}{\partial H_{2}} & \cdots & \frac{\partial r_{2}}{\partial H_{n}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial r_{m}}{\partial H_{1}} & \frac{\partial r_{m}}{\partial H_{2}} & \cdots & \frac{\partial r_{m}}{\partial H_{n}}
\end{array}\right]
$$

- Approximation
- 2-point
- 3-point
- Analytical Form

MegaStitch Jacobian Matrix

Calculating Jacobians analytically

- 18 different types of equations

■ Calculated manually

$$
r_{i j}^{k}=\sqrt{\left(u_{i r}^{k}[x]-u_{j r}^{k}[x]\right)^{2}+\left(u_{i r}^{k}[y]-u_{j r}^{k}[y]\right)^{2}}
$$

$$
\begin{array}{r}
\frac{\partial r_{i j}^{k}}{H_{i}^{11}}=\frac{1}{2} \frac{1}{\sqrt{r_{i j}^{k}}}\left[2\left(u_{i r}^{k}[x] \frac{\partial u_{i r}^{k}[x]}{\partial H_{i}^{11}}-u_{j r}^{k}[x] \frac{\partial u_{j r}^{k}[x]}{\partial H_{j}^{11}}\right)+\right. \\
\left.2\left(u_{i r}^{k}[y] \frac{\partial u_{i r}^{k}[y]}{\partial H_{i}^{11}}-u_{j r}^{k}[y] \frac{\partial u_{j r}^{k}[y]}{\partial H_{j}^{11}}\right)\right]
\end{array}
$$

Experiments

1 leastsq + no jacobian
2 leastsq + analytical jacobian
3 least_squares + 2-point
4 least_squares + 3-point
5 least_squares + analytical jacobian

Experiments

leastsq + no jacobian
Ariyan Zarei
■ running time on 5 images: 43.19 s

Bundle

Adjustment
Review
MegaStitch
and Bundle
Adjustment
Comparing Optimization Approaches

Experiments

MGRAPH
Ariyan Zarei

Bundle
Adjustment
Review
MegaStitch
and Bundle
Adjustment
Comparing Optimization Approaches and
Parameters
leastsq + analytical jacobian

- running time on 5 images: 00.61 s

Experiments

MGRAPH
Ariyan Zarei

Bundle
Adjustment
Review
MegaStitch
and Bundle
Adjustment
Comparing Optimization Approaches and
Parameters
least_squares + 2-point
■ running time on 5 images: 03.84 s

Experiments

MGRAPH
Ariyan Zarei

Bundle
Adjustment
Review
MegaStitch and Bundle

Adjustment

Comparing Optimization Approaches

Parameters
least_squares +3 -point
■ running time on 5 images: 04.72 s

Experiments

MGRAPH
Ariyan Zarei

Bundle
Adjustment
Review
MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and
Parameters
least_squares + analytical jacobian
■ running time on 5 images: 00.97 s

Results

MGRAPH
Ariyan Zarei

Bundle
Adjustment
Review
MegaStitch
and Bundle
Adjustment
Comparing Optimization Approaches

Results

Bundle
Adjustment
Review
MegaStitch
and Bundle
Adjustment
Comparing Optimization Approaches

Parameters

Figure: Left to right: leastsq, leastsq+analytical, least_squares+2, least_squares+3, least_squares+analytical

Results

MGRAPH
Ariyan Zarei

Bundle
Adjustment
Review
MegaStitch
and Bundle
Adjustment
Comparing Optimization Approaches

Parameters

Conclusions

- Calculating jacobians analytically helps a lot whenever possible ($\approx 80 \mathrm{X}$ faster for leastsq).
■ Use leastsq when you don't have bounds.
- least_squares is generally faster compared to leastsq.
- probably we need to tune the parameters of least_squares with analytical jacobians to get better results.

The End

Thank you Very much for you attention.

I will upload the slide to my homepage at http://vision.cs.arizona.edu/ariyanzarei/

