MGRAPH

Ariyan Zare

Bundle Adjustmen Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters A Comparison Between Different Approaches of Solving Nonlinear Least Squares in the Case of Bundle Adjustment

Ariyan Zarei

University of Arizona

ariyanzarei@email.arizona.edu

December 9, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Overview

MGRAPH

Ariyan Zare

Bundle Adjustment Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters

1 Bundle Adjustment Review

2 MegaStitch and Bundle Adjustment

3 Comparing Optimization Approaches and Parameters

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Bundle Adjustment Review

Bundle Adjustment Review

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Visual Reconstruction and Bundle Adjustment

Bundle Adjustment Review

MegaStitch and Bundle Adjustment

Comparing Optimizatior Approaches and Parameters

Definitions

MGRAPH

Ariyan Zarei

Bundle Adjustment Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters

- Visual Reconstruction: Recover a model of a 3D scene from multiple images.
- Scene Model: Collection of isolated 3D features, e.g., points, lines, etc.
- Bundle Adjustment: Problem of refining a visual reconstruction model to produce jointly optimal 3D structure and viewing parameter (camera pose/calibration) estimates.
- **jointly**: Solution is simultaneously optimal with respect to both structure and camera variations.
- optimal: Parameter estimates are found by minimizing some cost function that quantifies the model fitting error.
- Bundle in the name refers to the bundles of light rays leaving each 3D feature and converging on each camera center.

Bundle Adjustment for Image Stitching

MGRAPH

Ariyan Zarei

Bundle Adjustment Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters

- Bundle Adjustment from Brown and Low paper (projection error)
- Minimizing Projection Error

$$e = \sum_{i=1}^{n} \sum_{j \in I(i)} \sum_{k \in K(i,j)} h(r_{ij}^k)$$

$$r_{ij}^k = u_i^k - H_{ij}u_j^k$$

MegaStitch and Bundle Adjustment

Ariyan Zare

Bundle Adjustment Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters

MegaStitch and Bundle Adjustment

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

MegaStitch

MGRAPH

Ariyan Zarei

Bundle Adjustment Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters

- Large scale image stitching method
- Prevent drift and inconsistency
- Include all available sources of information
- Can be used on Drone and Gantry images
 - Translation/Similarity/Affine
 - Linear Least Squares
 - Proposed a new approach of bundle adjustment

- Can be used on other dataset with Homography
 - Nonlinear Least Squares
 - Main point of this presentation

MegaStitch, Bundle Adjustment for Homography case

MGRAPH

Ariyan Zarei

Bundle Adjustment Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters

- Consider a reference image
- We estimate absolute Homographies between each image and the reference image
- Bundle Adjustment

$$e = p + \sum_{i=1}^{n} \sum_{j \in I(i)} \sum_{k \in \mathcal{K}(i,j)} r_{ij}^{k}$$

$$r_{ij}^{k} = \sqrt{(u_{ir}^{k}[x] - u_{jr}^{k}[x])^{2} + (u_{ir}^{k}[y] - u_{jr}^{k}[y])^{2}}$$

$$u_{ir}^{k}[x] = \frac{H_{i}^{1}u_{i}^{k}}{H_{i}^{3}u_{i}^{k}}, \ \ u_{ir}^{k}[y] = \frac{H_{i}^{2}u_{i}^{k}}{H_{i}^{3}u_{i}^{k}}$$

• p is a penalty term that enforces $H_r = I$ (for the reference image).

MegaStitch, Bundle Adjustment for Homography case

MGRAPH

Ariyan Zare

Bundle Adjustment Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters

$$e = p + \sum_{i=1}^{n} \sum_{j \in I(i)} \sum_{k \in K(i,j)} r_{ij}^{k}$$

$$r_{ij}^{k} = \sqrt{(u_{ir}^{k}[x] - u_{jr}^{k}[x])^{2} + (u_{ir}^{k}[y] - u_{jr}^{k}[y])^{2}}$$

$$u_{ir}^{k}[x] = \frac{H_{i}^{1}u_{i}^{k}}{H_{i}^{3}u_{i}^{k}}, \quad u_{ir}^{k}[y] = \frac{H_{i}^{2}u_{i}^{k}}{H_{i}^{3}u_{i}^{k}}$$

- H¹_i: the first row of homography matrix for image i (these are the parameters).
- u_i^k : location of the keypoint k in image i.
- u^k_{ir}: projected keypoint k from image i into the reference image.

Solving Nonlinear Least Squares

MGRAPH

Ariyan Zare

Bundle Adjustment Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters

Python Scipy

- leastsq function: unconstrained nonlinear least squares solver.
 - callable function that calculates the residuals
 - starting point
 - optional callable function that calculates the jacobians

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- wrapper around the MINIPACK's Imdif and Imder functions (Fortran)
- Levenberg-Marquardt algorithm

Solving Nonlinear Least Squares

MGRAPH

Ariyan Zare

Bundle Adjustment Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters

- least_squares function: nonlinear least squares solver with bounds on variables (newer).
 - callable function that calculates the residuals
 - starting point
 - method for estimating the jacobians: 2-point, 3-point or optional callable function that calculates the jacobians
 - minimization method
 - trf : Trust Region Reflective algorithm, large sparse problems with bounds.
 - dogbox : dogleg algorithm with rectangular trust regions, small problems with bounds.
 - Im : Levenberg-Marquardt algorithm as implemented in MINPACK, small unconstrained problems.

Comparing Optimization Approaches and Parameters

MGRAPH

Ariyan Zare

Bundle Adjustment Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters

Comparing Optimization Approaches and Parameters

Comparing Optimization Approaches

MGRAPH

Ariyan Zare

- Bundle Adjustment Review
- MegaStitch and Bundle Adjustment
- Comparing Optimization Approaches and Parameters
- Comparing the effect of calculating vs estimating (2 cases) the jacobians using the two mentioned functions on

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Speed
- Accuracy

Jacobian Matrix

MGRAPH

Ariyan Zare

Bundle Adjustment Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters Partial Derivative of each residual with respect to each variable

$$J = \frac{\partial r}{\partial H} = \begin{bmatrix} \frac{\partial r_1}{\partial H_1} & \frac{\partial r_1}{\partial H_2} & \cdots & \frac{\partial r_1}{\partial H_n} \\ \frac{\partial r_2}{\partial H_1} & \frac{\partial r_2}{\partial H_2} & \cdots & \frac{\partial r_2}{\partial H_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial r_m}{\partial H_1} & \frac{\partial r_m}{\partial H_2} & \cdots & \frac{\partial r_m}{\partial H_n} \end{bmatrix}$$

- Approximation
 - 2-point
 - 3-point
- Analytical Form

MegaStitch Jacobian Matrix

MGRAPH

Ariyan Zarei

Bundle Adjustment Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters Calculating Jacobians analytically

- 18 different types of equations
- Calculated manually

$$r_{ij}^{k} = \sqrt{(u_{ir}^{k}[x] - u_{jr}^{k}[x])^{2} + (u_{ir}^{k}[y] - u_{jr}^{k}[y])^{2}}$$

$$\begin{aligned} \frac{\partial r_{ij}^k}{H_i^{11}} &= \frac{1}{2} \frac{1}{\sqrt{r_{ij}^k}} [2(u_{ir}^k[x] \frac{\partial u_{ir}^k[x]}{\partial H_i^{11}} - u_{jr}^k[x] \frac{\partial u_{jr}^k[x]}{\partial H_j^{11}}) + \\ 2(u_{ir}^k[y] \frac{\partial u_{ir}^k[y]}{\partial H_i^{11}} - u_{jr}^k[y] \frac{\partial u_{jr}^k[y]}{\partial H_j^{11}})] \end{aligned}$$

MGRAPH

Ariyan Zarei

Bundle Adjustment Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters

- 1 leastsq + no jacobian
- 2 leastsq + analytical jacobian
- **3** least_squares + 2-point
- 4 least_squares + 3-point
- **5** least_squares + analytical jacobian

MGRAPH

Ariyan Zare

Bundle Adjustment Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters

leastsq + no jacobianrunning time on 5 images: 43.19 s

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � �

MGRAPH

Ariyan Zare

Bundle Adjustment Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters

leastsq + analytical jacobianrunning time on 5 images: 00.61 s

MGRAPH

Ariyan Zare

Bundle Adjustment Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters

least_squares + 2-point running time on 5 images: 03.84 s

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - ∽��?

MGRAPH

Ariyan Zare

Bundle Adjustment Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters

least_squares + 3-point running time on 5 images: 04.72 s

MGRAPH

Ariyan Zare

Bundle Adjustment Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters

least_squares + analytical jacobianrunning time on 5 images: 00.97 s

Results

MGRAPH

Ariyan Zare

Bundle Adjustment Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters

Results

MGRAPH

Ariyan Zare

Bundle Adjustmen Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters

Figure: Left to right: leastsq, leastsq+analytical, least_squares+2, least_squares+3, least_squares+analytical

Results

MGRAPH

Ariyan Zarei

Bundle Adjustmen Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters

Sac

æ

Conclusions

MGRAPH

Ariyan Zarei

Bundle Adjustment Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters

- Calculating jacobians analytically helps a lot whenever possible ($\approx 80X$ faster for leastsq).
- Use leastsq when you don't have bounds.
- least_squares is generally faster compared to leastsq.
- probably we need to tune the parameters of least_squares with analytical jacobians to get better results.

The End

MGRAPH

Ariyan Zare

Bundle Adjustmen Review

MegaStitch and Bundle Adjustment

Comparing Optimization Approaches and Parameters

Thank you Very much for you attention.

I will upload the slide to my homepage at http://vision.cs.arizona.edu/ariyanzarei/

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00