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Gradient Descent: a 1st order method for
optimization

Calculate Gradient of loss function and take step

Issues

Convergence to a local minimum can be very slow
Not getting the best direction (zig zagging)
No guarantee to get to global minimum
Saddle points (min and max at the same time)

See Animation

https://blog.paperspace.com/content/images/2018/05/68747470733a2f2f707669676965722e6769746875622e696f2f6d656469612f696d672f70617274312f6772616469656e745f64657363656e742e676966.gif
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Gradient Descent: a 1st order method for
optimization

Different variations of the same 1st order method

SGD and Momentum
RMSProp
Adam
AdaGrad
...
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Second order methods and Newton’s method
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Introduction to Newton’s method

Newton-Raphson’s method

Iterative second order algorithm

Different applications

Zero finding of a function
Optimizing a function (minimum and maximum finding)
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Newton’s method for zero finding

f (x ′) = 0, f := R→ R

xt+1 = xt −
f (xt)

f ′(xt)
, x0 ∈ Df
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Newton’s method for zero finding

Intuition: Use a linear approximation of f and check where
it intersects x axis.

Tangent line as a first order approximate.
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Newton’s method for zero finding

By − Ay

Bx − Ax
= f ′(Ax)

0− f (xt)

xt+1 − xt
= f ′(xt)



Second Order
Methods

Ariyan Zarei

Review

Gradient Descent: a
1st order method for
optimization

Second order
methods-
Newton’s
method

Introduction to
Newton’s method

Newton’s method for
zero finding

Newton’s method for
optimization

Conjugate
Gradients

Quadratic Form and
Linear System of
Equations

Steepest Descent
Method

Conjugacy and
Conjugate Directions

Conjugate Gradients
Method

References

The End

Newton’s method for zero finding

0− f (xt)

xt+1 − xt
= f ′(xt)

f ′(xt)xt+1 − f ′(xt)xt = −f (xt)

xt+1 =
f ′(xt)xt − f (xt)

f ′(xt)

xt+1 = xt −
f (xt)

f ′(xt)
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Newton’s method for optimization

Minimum of a function

Gradient equal to zero
Closed form
Iterative methods
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Newton’s method for optimization

xt+1 = xt −
f ′(xt)

f ′′(xt)
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Newton’s method for optimization

Idea: Estimate a second order function at xt and find it’s
minimum. This is a good direction.

Second order methods are much faster than first order methods.
The also provide a better direction.

Reason is second order is a more accurate approximation than
first order.



Second Order
Methods

Ariyan Zarei

Review

Gradient Descent: a
1st order method for
optimization

Second order
methods-
Newton’s
method

Introduction to
Newton’s method

Newton’s method for
zero finding

Newton’s method for
optimization

Conjugate
Gradients

Quadratic Form and
Linear System of
Equations

Steepest Descent
Method

Conjugacy and
Conjugate Directions

Conjugate Gradients
Method

References

The End

Recall on some math

Gradient of f calculated at point a:

g = ∇f (a) =


∂f (a)
∂x1
∂f (a)
∂x2
...

∂f (a)
∂xn


where f := Rn → R and a =

[
a1 a2 . . . an

]
is a point

in the n dimensional space of x1, x2, . . . , xn.
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Recall on some math

Hessian of f calculated at point a:

H = ∇2f (a) =


∂2f (a)
∂x2

1

∂2f (a)
∂x1∂x2

. . . ∂2f (a)
∂x1∂xn

∂2f (a)
∂x2∂x1

∂2f (a)
∂x2

2
. . . ∂2f (a)

∂x2∂xn
...

∂2f (a)
∂xn∂x1

∂2f (a)
∂xn∂x2

. . . ∂2f (a)
∂x2

n


Hessian is the matrix of all possible second partial
derivatives. It resembles the curvature of the function at a
given point in each direction.
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Recall on some math

Eigenvectors of H correspond with directions where the
curvature is independent of the other directions. Or in
other words each eigenvector is the rate of change of
gradient in one of the dimensions.

Eigenvalues of H correspond with the amount of the
curvature in each direction.

For the ith eigenvector and ith eigenvalue of matrix M we have
Mvi = λivi .
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Recall on some math

Taylor’s Series of an univariate function f at a point a:

f (x) ≈ f (a) +
f ′(a)

1!
(x − a) +

f ′′(a)

2!
(x − a)2 + . . .

Approximates an infinitely differentiable function f := R→ R
around a point a. We can truncate the series at each of the
terms. For cos(x) around zero:
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Recall on some math

Taylor’s Series of a two variable function f at a point a, b:

f (x, y) ≈ f (a, b) +
1

1!
[fx (a, b)(x − a) + fy (a, b)(y − b)] +

1

2!
[fxx (a, b)(x − a)2 + 2fxy (a, b)(x − a)(y − b) + fyy (a, b)(y − b)2] + . . .

We can use dot products, matrices and vectors to simplify
Taylor’s series for multivariate functions:

f (X ) = f (A) +
1

1!
∇f (A)(X − A) +

1

2!
(X − A)>∇2f (A)(X − A) + . . .

Where X =
[
x1 x2 . . . xn

]
and A =

[
a1 a2 . . . an

]
.
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Newton’s method for optimization

Idea: Estimate a second order function at xt and find it’s
minimum using closed form (derivative equal to zero).
This is a good direction for finding the minimum of f.
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Newton’s method for optimization

Second order/quadratic approximation of f around a point A:

q(X ) ≈ f (A) +∇>f (A)(X − A) +
1

2
(X − A)>∇2f (A)(X − A)

≈ f (A) +∇>f (A)X −∇>f (A)A +
1

2
X>∇2f (A)X −

A>∇2f (A)X +
1

2
A>∇2f (A)A

≈ 1

2
X>∇2f (A)X +

[
∇>f (A)− A>∇2f (A)

]
X +[

f (A)−∇>f (A)A +
1

2
A>∇2f (A)A

]
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Newton’s method for optimization

q(X ) ≈
1

2
X>∇2f (A)X +

[
∇>f (A)− A>∇2f (A)

]
X +[

f (A)−∇>f (A)A +
1

2
A>∇2f (A)A

]
To minimize q, we need to have ∇q = 0.

∇2f (A)X +
[
∇>f (A)− A>∇2f (A)

]
= 0

Now solve for X:

X = [∇2f (A)]−1[A>∇2f (A)−∇>f (A)]

X = A− [∇2f (A)]−1[∇>f (A)] = A− H−1G>

xt+1 = xt −
f ′(xt)

f ′′(xt)
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Newton’s method problems

The Hessian might not be invertible (if Hessian is Positive
Semi Definite and at least one of the eigenvalues is zero).

The Hessian is Negative Definite. It will direct to the
incorrect direction.

In these cases we can switch to Gradient Descent.
LevenbergMarquardt algorithm switches wisely between
1st and 2nd order methods.

Computing Hessian and its inverse is expensive.

Solve Hy = G for y numerically instead of calculating
inverse of H.
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Conjugate Gradients
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Quadratic Form and Linear System of Equations

Conjugate Gradients is a method for solving Sparse linear
system of equations in the form Ax = b. This is
equivalent to minimizing a Quadratic Form.

Quadratic Form

Quadratic function of a vector

f (x) =
1

2
x>Ax − b>x + c

where A is a matrix, b and x are vectors and c is a scalar.

If A is symmetric and positive definite, minimizing the
quadratic form is equal to solving Ax = b.
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Quadratic Form and Linear System of Equations

Example:

A =

[
3 2
2 6

]
, b =

[
2
8

]



Second Order
Methods

Ariyan Zarei

Review

Gradient Descent: a
1st order method for
optimization

Second order
methods-
Newton’s
method

Introduction to
Newton’s method

Newton’s method for
zero finding

Newton’s method for
optimization

Conjugate
Gradients

Quadratic Form and
Linear System of
Equations

Steepest Descent
Method

Conjugacy and
Conjugate Directions

Conjugate Gradients
Method

References

The End

Quadratic Form and Linear System of Equations

Positive Definiteness → upward paraboloid bowl (intuition)
Minimize the Quadratic form? set the gradient to zero
and solve for x.

f (x) =
1

2
x>Ax − b>x + c

f ′(x) =
1

2
A>x +

1

2
Ax − b

If A is symmetric:

f ′(x) = Ax − b

To minimize:

f ′(x) = Ax − b = 0

Ax = b
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Quadratic Form and Linear System of Equations

So, the solution to Ax = b is a critical point of the f (x).

Since A is positive definite (upward shape) as well as symmetric, the
solution of the system of equation is a minimum of f (x).

Intuition: A tells us the shape of the surface. b and c tell us the minimum
point (if any)



Second Order
Methods

Ariyan Zarei

Review

Gradient Descent: a
1st order method for
optimization

Second order
methods-
Newton’s
method

Introduction to
Newton’s method

Newton’s method for
zero finding

Newton’s method for
optimization

Conjugate
Gradients

Quadratic Form and
Linear System of
Equations

Steepest Descent
Method

Conjugacy and
Conjugate Directions

Conjugate Gradients
Method

References

The End

Steepest Descent Method

Take series of steps until you are satisfied that you are
close enough to minimum.

Take each step in the direction which f decreases most
quickly (−∇f (x)).

Step size: use line search to gain maximum possible
reduction in f in the direction of the −∇f (x). This is
where Gradient Descent and Steepest Descent are
different from each other.
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Steepest Descent Method

Some Definitions:

error: ei = xi − x∗. How far we are from the solution.
residual: ri = b − Axi = −Aei . How far we are from the
value of b. In other words, residual is the error transformed
by A into the space of b.

Note: ri = −f ′(xi ) = −∇f (xi )
Update rule will be xi+1 = xi + αri
Use line search to get the best value for α at each step.
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Steepest Descent Method

Line Search
Minimize f (xi+1) along a line (the direction of the
gradient).
f (xi+1) = f (xi + αri ) is the parabola that is the
intersection of the plain and paraboloid. It is a function of
α.
Minimize? d

dα f (xi + αri ) = 0
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Steepest Descent Method

Minimize? d
dα f (xi + αri ) = 0

d

dα
f (xi + αri ) = f ′(xi + αri )

> d

dα
(xi + αri )

= f ′(xi + αri )
>ri = f ′(xi+1)>ri

Remember ri+1 = −f ′(xi+1):

f ′(xi+1)>ri = −r>i+1ri = 0
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Steepest Descent Method

d

dα
f (xi + αri ) = f ′(xi+1)>ri = −r>i+1ri = 0

Intuition: The gradient at the minimum of the parabola, should
be orthogonal to the previous gradient.
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Steepest Descent Method

r>i+1ri = 0

(b − Axi+1)>ri = 0

(b − A(xi + αri ))>ri = 0

(b − Axi − αAri )>ri = 0

(b − Axi )
>ri − α(Ari )

>ri = 0

(b − Axi )
>ri = α(Ari )

>ri

r>i ri = αr>i A>ri

α =
r>i ri

r>i Ari
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Steepest Descent Method

Summary:

ri = b − Axi

αi =
r>i ri

r>i Ari

xi+1 = xi + αi ri
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Steepest Descent Method

Better and faster than GD

Two matrix multiplication per iteration (expensive)

Proof of convergence (Homework!)
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Conjugacy and Conjugate Directions

Remember: Steepest Descent takes steps in the same
directions as two previous steps. (zig zagging path).

Would be a lot faster if we took correct step size for each
direction so that we never need to take step in that
direction.

Convergence and speed of minimization would be a lot
faster (linear to the number of dimensions?)
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Conjugacy and Conjugate Directions

Idea? Find n − 1 orthogonal directions and take exactly
one step in each direction with the correct length to end
up at minimum.
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Conjugacy and Conjugate Directions

xi+1 = xi + αdi

Idea? Error vector at step i + 1 be orthogonal to di .

problem? We need to know the answer to calculate the
error!! (ei+1 = xi+1 − x∗)

Solution? Use A-orthogonality or conjugacy instead of
orthogonality.

Two vectors u and v are A-orthogonal or conjugate if:

u>Av = 0

Remember that orthogonality of two vector u and v is
u>v = 0.
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Conjugacy and Conjugate Directions
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Conjugacy and Conjugate Directions

Two A-orthogonal or conjugate vectors

u>Av = 0

u be orthogonal with v transformed to the space of b
using matrix A? (my own interpretation)

New requirement for the step size (to take steps with the
proper length in each direction):

Error of the next step be conjugate / A-orthogonal to the
direction of the current step

d>i Aei+1 = 0
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Conjugacy and Conjugate Directions

This intuition comes from line search along the di
direction:

d

dα
f (xi+1) = 0

f ′(xi+1)>
d

dα
xi+1 = 0

Remember that f ′(xi+1) = −ri+1 and xi+1 = xi + αidi .
So:

−r>i+1di = 0

(Aei+1)>di = 0

e>i+1A
>di = 0

d>i Aei+1 = 0
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Conjugacy and Conjugate Directions

If we open up and solve for αi we get:

αi =
d>i ri

d>i Adi

Note that if the direction vectors were residuals (negative
of gradients), this would be the same formula used by the

Steepest Descent method. (αi =
r>i ri
r>i Ari

)

This procedure computes x∗ in n steps.
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Conjugacy and Conjugate Directions

Gram-Schmidt Conjugation / Conjugate Gram-Schmidt
process

A way to get A-orthogonal search directions di .
Algorithm

Start with a set of n independent vectors (like the unit
vectors along coordinate axis ) u0, u1, . . . , un−1.
Set d0 = u0

for each di where i > 0, take ui and subtract out any
components that are not A-orthogonal to the previous d
vectors.

di = ui +
i−1∑
k=0

βikdk

where for i > j :

βij = − u>i Adj
d>j Adj
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Conjugate Gradients Method

Conjugate Gradients Method is built upon all previous
techniques and methods.

We use the method of Conjugate Directions where our
search directions are the conjugated of the residuals (or
the gradients)

That is why this algorithm is called Conjugate Gradients
(Conjugated Gradients is much better as the paper
suggests).
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Conjugate Gradients Method

We use ri in the Gram-Schmidt process to get the search
directions.

Because of the orthogonality of the residuals and the fact
that each residuals is a linear combination of previous
residuals and Adi−1, Gram-Schmidt process (the
summation) becomes a single term.

Search directions can be calculated iteratively as each step
runs.

We can work around the math and find all the necessary
equations for Conjugate Gradients method.
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Conjugate Gradients Method

d0 = r0 = b − Ax0

αi =
r>i ri

d>i Adi
xi+1 = xi + αidi

ri+1 = ri − αiAdi

βi+1 =
r>i+1ri+1

r>i ri
di+1 = ri+1 + βi+1di
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Conjugate Gradients Method

Conjugate Gradient method is faster than Gradient
Descent because of the conjugate search directions.

It does not require calculating Hessian unlike Newton’s
method.
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Draw graphs: link

2nd Order Optimization material: link

GD in NN and issues: link

Hessian for DL: link

Algs to train NN: link

Youtube videos for Newton method: link and link

Intro to Newton method: link

Taylor series: link

Taylor series for Multivariate functions: link

Conjugate Gradient Method: link

https://www.math10.com/en/geometry/geogebra/fullscreen.html
https://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/13-Optimization/04-secondOrderOpt.pdf
https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/
https://mlexplained.com/2018/02/02/an-introduction-to-second-order-optimization-for-deep-learning-practitioners-basic-math-for-deep-learning-part-1/
https://www.neuraldesigner.com/blog/5_algorithms_to_train_a_neural_network
https://www.youtube.com/watch?v=28BMpgxn_Ec&t=164s
https://www.youtube.com/watch?v=42zJ5xrdOqo
https://medium.com/@ruhayel/an-intuitive-and-physical-approach-to-newtons-method-86a0bd812ec3
https://www.mathsisfun.com/algebra/taylor-series.html
http://www.math.ucdenver.edu/~esulliva/Calculus3/Taylor.pdf
https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
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Thank you for your attention
I will post the slides to my homepage at

http://vision.cs.arizona.edu/ariyanzarei/

http://vision.cs.arizona.edu/ariyanzarei/
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