Second Order Methods

Ariyan Zare

Review

Gradient Descent: a 1st order method for optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form an Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Direction

Conjugate Gradients Method

References

Second Order Methods and Conjugate Gradient Method in Optimization

Ariyan Zarei

University of Arizona

ariyanzarei@email.arizona.edu

September 21, 2020

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Overview

Second Order Methods

Ariyan Zarei

Review

Gradient Descent: a 1st order method fo optimization

Second orde methods-Newton's method

Introduction to Newton's metho

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form and Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Directions

Method

References

1 Review

Gradient Descent: a 1st order method for optimization

2 Second order methods-Newton's method

- Introduction to Newton's method
- Newton's method for zero finding
- Newton's method for optimization

3 Conjugate Gradients

Quadratic Form and Linear System of Equations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Steepest Descent Method
- Conjugacy and Conjugate Directions
- Conjugate Gradients Method

References

5 The End

Second Order Methods

Review

Gradient Descent: 1st order method for optimization

Second orde methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form and Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Direction

Conjugate Gradients Method

References

Review

・ロト ・四ト ・ヨト ・ヨト

æ.

Gradient Descent: a 1st order method for optimization

Second Order Methods

Ariyan Zare

Review

Gradient Descent: a 1st order method for optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form an Linear System of Equations

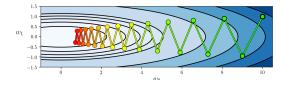
Steepest Descent Method

Conjugacy and Conjugate Direction

Conjugate Gradients Method

References

- Calculate Gradient of loss function and take stepIssues
 - Convergence to a local minimum can be very slow
 - Not getting the best direction (zig zagging)
 - No guarantee to get to global minimum
 - Saddle points (min and max at the same time)



See Animation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Gradient Descent: a 1st order method for optimization

Second Order Methods

Ariyan Zarei

Review

Gradient Descent: a 1st order method for optimization

Second orde methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form and Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Direction

Conjugate Gradients Method

References

Different variations of the same 1st order method

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- SGD and Momentum
- RMSProp
- Adam
- AdaGrad

· · · ·

Second Order Methods Arivan Zarei

Review

Gradient Descent: a 1st order method for optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form and Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Direction

Conjugate Gradients Method

References

Second order methods and Newton's method

・ロト ・ 四ト ・ ヨト ・ コト

∃ \(\mathcal{O}\) \(\lambda\) \(\lambda\)

Introduction to Newton's method

Second Order Methods

Ariyan Zarei

Review

Gradient Descent: a 1st order method fo optimization

Second orde methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form and Linear System of Equations

Steepest Descent Method

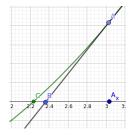
Conjugacy and Conjugate Direction

Conjugate Gradients Method

References

- Newton-Raphson's method
- Iterative second order algorithm
- Different applications
 - Zero finding of a function
 - Optimizing a function (minimum and maximum finding)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



$$f(x') = 0, f := \mathbb{R} o \mathbb{R}$$

 $x_{t+1} = x_t - \frac{f(x_t)}{f'(x_t)}, x_0 \in D_f$ ◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣 ─

Review

Gradient Descent: a 1st order method for optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

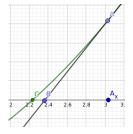
Quadratic Form and Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Directions

Conjugate Gradients Method

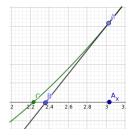
References



 Intuition: Use a linear approximation of f and check where it intersects x axis.

イロト 不得 トイヨト イヨト ニヨー

Tangent line as a first order approximate.



$$\frac{B_y - A_y}{B_x - A_x} = f'(A_x)$$

$$\frac{0 - f(x_t)}{x_{t+1} - x_t} = f'(x_t)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Second Order Methods

Ariyan Zare

Review

Gradient Descent: 1st order method for optimization

Second orde methods-Newton's method

Introduction to Newton's methor

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form an Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Direction

Conjugate Gradients Method

References

$$\frac{0 - f(x_t)}{x_{t+1} - x_t} = f'(x_t)$$

$$f'(x_t)x_{t+1} - f'(x_t)x_t = -f(x_t)$$

$$x_{t+1} = rac{f'(x_t)x_t - f(x_t)}{f'(x_t)}$$

$$x_{t+1} = x_t - \frac{f(x_t)}{f'(x_t)}$$

・ロト・日本・日本・日本・日本・日本

Second Order Methods

Ariyan Zare

Review

Gradient Descent: a 1st order method for optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

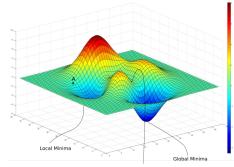
Quadratic Form an Linear System of Equations

Steepest Descen Method

Conjugacy and Conjugate Direction

Conjugate Gradients Method

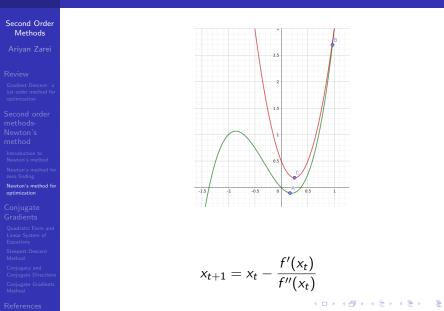
References



Saddle Point

Minimum of a function

- Gradient equal to zero
- Closed form
- Iterative methods



Ariyan Zare

Review

Gradient Descent: a 1st order method for optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

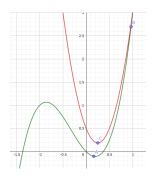
Quadratic Form an Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Directions

Conjugate Gradients Method

References



- Idea: Estimate a second order function at x_t and find it's minimum. This is a good direction.
- Second order methods are much faster than first order methods. The also provide a better direction.
- Reason is second order is a more accurate approximation than first order.

Second Order Methods

Ariyan Zarei

Review

Gradient Descent: a 1st order method fo optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form and Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Directions

Conjugate Gradients Method

References

Gradient of f calculated at point *a*:

$$g = \nabla f(a) = \begin{bmatrix} \frac{\partial f(a)}{\partial x_1} \\ \frac{\partial f(a)}{\partial x_2} \\ \vdots \\ \frac{\partial f(a)}{\partial x_n} \end{bmatrix}$$

where $f := \mathbb{R}^n \to \mathbb{R}$ and $a = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$ is a point in the n dimensional space of x_1, x_2, \dots, x_n .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Second Order Methods

Ariyan Zare

Review

Gradient Descent: a 1st order method fo optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form an Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Direction:

Conjugate Gradients Method

References

Hessian of f calculated at point a:

$$H = \nabla^2 f(\mathbf{a}) = \begin{bmatrix} \frac{\partial^2 f(\mathbf{a})}{\partial x_1^2} & \frac{\partial^2 f(\mathbf{a})}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(\mathbf{a})}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(\mathbf{a})}{\partial x_2 \partial x_1} & \frac{\partial^2 f(\mathbf{a})}{\partial x_2^2} & \cdots & \frac{\partial^2 f(\mathbf{a})}{\partial x_2 \partial x_n} \\ \vdots \\ \frac{\partial^2 f(\mathbf{a})}{\partial x_n \partial x_1} & \frac{\partial^2 f(\mathbf{a})}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(\mathbf{a})}{\partial x_n^2} \end{bmatrix}$$

Hessian is the matrix of all possible second partial derivatives. It resembles the curvature of the function at a given point in each direction.

(日) (四) (日) (日) (日)

Second Order Methods

Ariyan Zarei

Review

Gradient Descent: a 1st order method for optimization

Second order methods-Newton's method

Introduction to Newton's metho

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form and Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Directions

Conjugate Gradients Method

References

- Eigenvectors of H correspond with directions where the curvature is independent of the other directions. Or in other words each eigenvector is the rate of change of gradient in one of the dimensions.
- Eigenvalues of H correspond with the amount of the curvature in each direction.

For the ith eigenvector and ith eigenvalue of matrix M we have $Mv_i = \lambda_i v_i$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Second Order Methods

Ariyan Zare

Review

Gradient Descent: 1st order method for optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

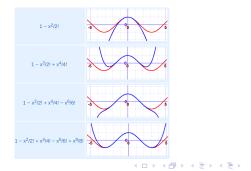
- Quadratic Form an Linear System of Equations
- Steepest Descent Method
- Conjugacy and Conjugate Direction
- Conjugate Gradients Method

References

Taylor's Series of an univariate function f at a point a:

$$f(x) \approx f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots$$

Approximates an infinitely differentiable function $f := \mathbb{R} \to \mathbb{R}$ around a point *a*. We can truncate the series at each of the terms. For cos(x) around zero:



Second Order Methods

Ariyan Zare

Review

Gradient Descent: a 1st order method fo optimization

Second orde methods-Newton's method

Introduction to Newton's method

Newton's method fo zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form an Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Directions

Conjugate Gradients Method

References

Taylor's Series of a two variable function f at a point a, b:

$$f(x, y) \approx f(a, b) + \frac{1}{1!} [f_x(a, b)(x - a) + f_y(a, b)(y - b)] + \frac{1}{2!} [f_{xx}(a, b)(x - a)^2 + 2f_{xy}(a, b)(x - a)(y - b) + f_{yy}(a, b)(y - b)^2] + \dots$$

We can use dot products, matrices and vectors to simplify Taylor's series for multivariate functions:

$$f(X) = f(A) + \frac{1}{1!} \nabla f(A)(X - A) + \frac{1}{2!} (X - A)^{\top} \nabla^2 f(A)(X - A) + \dots$$

Where $X = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}$ and $A = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Second Order Methods

Ariyan Zare

Review

Gradient Descent: a 1st order method for optimization

Second orde methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

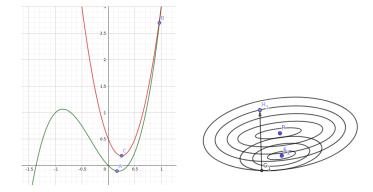
Quadratic Form and Linear System of Equations

Steepest Descen Method

Conjugacy and Conjugate Direction

Conjugate Gradients Method

References



Idea: Estimate a second order function at x_t and find it's minimum using closed form (derivative equal to zero).
 This is a good direction for finding the minimum of f.

Second Order Methods

Review

Gradient Descent: a 1st order method fo optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form an Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Direction

Conjugate Gradients Method

References

Second order/quadratic approximation of f around a point A:

$$q(X) \approx f(A) + \nabla^{\top} f(A)(X-A) + \frac{1}{2}(X-A)^{\top} \nabla^2 f(A)(X-A)$$

$$\approx f(A) + \nabla^{\top} f(A) X - \nabla^{\top} f(A) A + \frac{1}{2} X^{\top} \nabla^{2} f(A) X - A^{\top} \nabla^{2} f(A) X + \frac{1}{2} A^{\top} \nabla^{2} f(A) A$$

$$\approx \frac{1}{2} X^{\top} \nabla^2 f(A) X + \left[\nabla^{\top} f(A) - A^{\top} \nabla^2 f(A) \right] X + \left[f(A) - \nabla^{\top} f(A) A + \frac{1}{2} A^{\top} \nabla^2 f(A) A \right]$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - の々ぐ

Second Order Methods

Ariyan Zare

Review

Gradient Descent: a 1st order method for optimization

Second order methods-Newton's method

Introduction to Newton's metho

Newton's method fo zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form an Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Direction

Conjugate Gradients Method

References

$$q(X) \approx \frac{1}{2} X^{\top} \nabla^2 f(A) X + \left[\nabla^{\top} f(A) - A^{\top} \nabla^2 f(A) \right] X + \left[f(A) - \nabla^{\top} f(A) A + \frac{1}{2} A^{\top} \nabla^2 f(A) A \right]$$

To minimize q, we need to have $\nabla q = 0$.

$$\nabla^2 f(A)X + \left[\nabla^\top f(A) - A^\top \nabla^2 f(A)\right] = 0$$

Now solve for X:

$$X = [\nabla^2 f(A)]^{-1} [A^\top \nabla^2 f(A) - \nabla^\top f(A)]$$

$$X = A - [\nabla^2 f(A)]^{-1} [\nabla^\top f(A)] = A - H^{-1} G^\top$$

$$x_{t+1} = x_t - \frac{f'(x_t)}{f''(x_t)}$$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Newton's method problems

Second Order Methods

Ariyan Zarei

Review

Gradient Descent: a 1st order method for optimization

Second orde methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form and Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Directions

Conjugate Gradients Method

References

- The Hessian might not be invertible (if Hessian is Positive Semi Definite and at least one of the eigenvalues is zero).
- The Hessian is Negative Definite. It will direct to the incorrect direction.
- In these cases we can switch to Gradient Descent. LevenbergMarquardt algorithm switches wisely between 1st and 2nd order methods.
- Computing Hessian and its inverse is expensive.
- Solve Hy = G for y numerically instead of calculating inverse of H.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Second Order Methods

Ariyan Zare

Review

Gradient Descent: a 1st order method for optimization

Second orde methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form an Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Direction

Conjugate Gradients Method

References

Conjugate Gradients

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Second Order Methods

Ariyan Zarei

Review

Gradient Descent: a 1st order method fo optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form and Linear System of Equations

Steepest Descen Method

Conjugacy and Conjugate Directions

Conjugate Gradients Method

References

- Conjugate Gradients is a method for solving Sparse linear system of equations in the form Ax = b. This is equivalent to minimizing a Quadratic Form.
- Quadratic Form
 - Quadratic function of a vector

$$f(x) = \frac{1}{2}x^{\top}Ax - b^{\top}x + c$$

where A is a matrix, b and x are vectors and c is a scalar.

• If A is symmetric and positive definite, minimizing the quadratic form is equal to solving Ax = b.

Second Order Methods

Ariyan Zare

Review

Gradient Descent: a 1st order method fo optimization

Second order methods-Newton's method

Introduction to Newton's methor

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form and Linear System of Equations

Steepest Descent Method

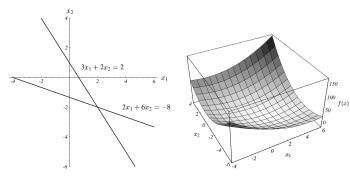
Conjugacy and Conjugate Direction

Conjugate Gradients Method

References

Example:

$$A = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}, b = \begin{bmatrix} 2 \\ 8 \end{bmatrix}$$



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

Second Order Methods

Ariyan Zare

Review

Gradient Descent: a 1st order method for optimization

Second order methods-Newton's method

Introduction to Newton's metho

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form and Linear System of Equations

Steepest Descen Method

Conjugacy and Conjugate Direction:

Conjugate Gradients Method

References

Positive Definiteness → upward paraboloid bowl (intuition)
 Minimize the Quadratic form? set the gradient to zero and solve for x.

$$f(x) = \frac{1}{2}x^{\top}Ax - b^{\top}x + c$$

$$f'(x) = \frac{1}{2}A^{\top}x + \frac{1}{2}Ax - b$$

If A is symmetric:

$$f'(x) = Ax - b$$

To minimize:

$$f'(x) = Ax - b = 0$$

$$Ax = b$$

Second Order Methods

Ariyan Zare

Review

Gradient Descent: a 1st order method for optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form and Linear System of Equations

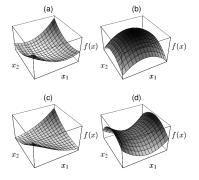
Steepest Descent Method

Conjugacy and Conjugate Direction

Conjugate Gradients Method

References

- So, the solution to Ax = b is a critical point of the f(x).
- Since A is positive definite (upward shape) as well as symmetric, the solution of the system of equation is a minimum of f(x).
- Intuition: A tells us the shape of the surface. b and c tell us the minimum point (if any)



・ロト・日本・日本・日本・日本・日本

Second Order Methods

Ariyan Zarei

Review

Gradient Descent: a 1st order method for optimization

Second orde methods-Newton's method

Introduction to Newton's metho

Newton's method for zero finding

Newton's method fo optimization

Conjugate Gradients

Quadratic Form and Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Directions

Conjugate Gradients Method

References

- Take series of steps until you are satisfied that you are close enough to minimum.
- Take each step in the direction which f decreases most quickly $(-\nabla f(x))$.
- Step size: use line search to gain maximum possible reduction in f in the direction of the −∇f(x). This is where Gradient Descent and Steepest Descent are different from each other.

Second Order Methods

- Ariyan Zarei
- Review

Gradient Descent: a 1st order method for optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form and Linear System of Equations

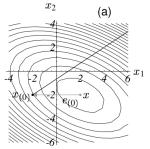
Steepest Descent Method

Conjugacy and Conjugate Direction

Conjugate Gradients Method

References

- Some Definitions:
 - error: $e_i = x_i x^*$. How far we are from the solution.
 - residual: $r_i = b Ax_i = -Ae_i$. How far we are from the value of b. In other words, residual is the error transformed by A into the space of b.
- Note: $r_i = -f'(x_i) = -\nabla f(x_i)$
- Update rule will be $x_{i+1} = x_i + \alpha r_i$
- Use line search to get the best value for α at each step.



Second Order Methods

Ariyan Zarei

Review

Gradient Descent: a 1st order method for optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form and Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Direction

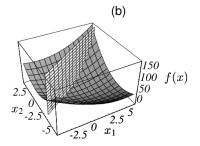
Conjugate Gradients Method

References

Line Search

- Minimize f(x_{i+1}) along a line (the direction of the gradient).
- f(x_{i+1}) = f(x_i + αr_i) is the parabola that is the intersection of the plain and paraboloid. It is a function of α.

• Minimize?
$$\frac{d}{d\alpha}f(x_i + \alpha r_i) = 0$$



Second Order Methods

Ariyan Zare

Review

Gradient Descent: a 1st order method fo optimization

Second order methods-Newton's method

Introduction to Newton's metho

Newton's method fo zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form an Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Direction

Conjugate Gradients Method

References

Minimize?
$$\frac{d}{d\alpha}f(x_i + \alpha r_i) = 0$$

$$\frac{d}{d\alpha}f(x_i+\alpha r_i)=f'(x_i+\alpha r_i)^{\top}\frac{d}{d\alpha}(x_i+\alpha r_i)$$

$$= f'(x_i + \alpha r_i)^{\top} r_i = f'(x_{i+1})^{\top} r_i$$

Remember $r_{i+1} = -f'(x_{i+1})$:

$$f'(x_{i+1})^{\top}r_i = -r_{i+1}^{\top}r_i = 0$$

Second Order Methods

Ariyan Zare

Review

Gradient Descent: a 1st order method for optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form and Linear System of Equations

Steepest Descent Method

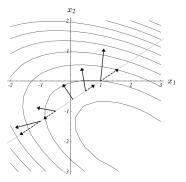
Conjugacy and Conjugate Direction

Conjugate Gradients Method

) - f -

$$\frac{d}{d\alpha}f(x_i+\alpha r_i)=f'(x_{i+1})^{\top}r_i=-r_{i+1}^{\top}r_i=0$$

Intuition: The gradient at the minimum of the parabola, should be orthogonal to the previous gradient.



Second Order Methods

Ariyan Zare

Review

Gradient Descent: a 1st order method for optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form and Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Direction

Conjugate Gradients Method

References

$$r_{i+1}^{\dagger}r_{i} = 0$$

$$(b - Ax_{i+1})^{\top}r_{i} = 0$$

$$(b - A(x_{i} + \alpha r_{i}))^{\top}r_{i} = 0$$

$$(b - Ax_{i} - \alpha Ar_{i})^{\top}r_{i} = 0$$

$$(b - Ax_{i})^{\top}r_{i} - \alpha (Ar_{i})^{\top}r_{i} = 0$$

$$(b - Ax_{i})^{\top}r_{i} = \alpha (Ar_{i})^{\top}r_{i}$$

$$r_{i}^{\top}r_{i} = \alpha (Ar_{i})^{\top}r_{i}$$

$$\alpha = \frac{r_{i}^{\top}r_{i}}{r_{i}^{\top}Ar_{i}}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Summary:

Methods Ariyan Zarei

Second Order

Review

Gradient Descent: a 1st order method fo optimization

Second order methods-Newton's method

Introduction to Newton's metho

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

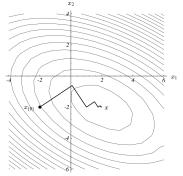
Quadratic Form and Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Direction

Conjugate Gradients Method

References



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Second Order Methods

Ariyan Zarei

Review

Gradient Descent: a 1st order method fo optimization

Second orde methods-Newton's method

Introduction to Newton's methor

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form and Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Direction

Conjugate Gradients Method

References

Better and faster than GD

Two matrix multiplication per iteration (expensive)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof of convergence (Homework!)

Second Order Methods

Ariyan Zarei

Review

Gradient Descent: a 1st order method fo optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form an Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Directions

Conjugate Gradients Method

References

- Remember: Steepest Descent takes steps in the same directions as two previous steps. (zig zagging path).
- Would be a lot faster if we took correct step size for each direction so that we never need to take step in that direction.
- Convergence and speed of minimization would be a lot faster (linear to the number of dimensions?)

Second Order Methods

Ariyan Zare

Review

Gradient Descent: a 1st order method fo optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form and Linear System of Equations

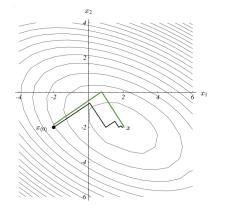
Steepest Descent Method

Conjugacy and Conjugate Directions

Conjugate Gradients Method

References

■ Idea? Find n − 1 orthogonal directions and take exactly one step in each direction with the correct length to end up at minimum.



▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Second Order Methods

Ariyan Zarei

Review

Gradient Descent: a 1st order method for optimization

Second orde methods-Newton's method

Introduction to Newton's metho

Newton's method for zero finding

Newton's method fo optimization

Conjugate Gradients

Quadratic Form an Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Directions

Conjugate Gradients Method

References

$$x_{i+1} = x_i + \alpha d_i$$

- Idea? Error vector at step i + 1 be orthogonal to d_i .
- problem? We need to know the answer to calculate the error!! $(e_{i+1} = x_{i+1} x^*)$
- Solution? Use A-orthogonality or conjugacy instead of orthogonality.
- Two vectors *u* and *v* are *A*-orthogonal or conjugate if:

$$u^{\top}Av = 0$$

• Remember that orthogonality of two vector u and v is $u^{\top}v = 0$.

Second Order Methods

Ariyan Zarei

Review

Gradient Descent: a 1st order method fo optimization

Second orde methods-Newton's method

Introduction to Newton's method

Newton's method fo zero finding

Newton's method fo optimization

Conjugate Gradients

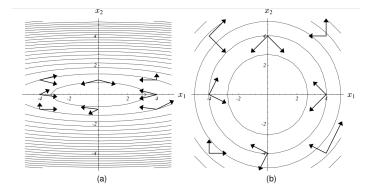
Quadratic Form and Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Directions

Conjugate Gradients Method

References



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Second Order Methods

Ariyan Zare

Review

Gradient Descent: a 1st order method for optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form an Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Directions

Conjugate Gradients Method

References

Two A-orthogonal or conjugate vectors

$$u^{\top}Av = 0$$

- u be orthogonal with v transformed to the space of b using matrix A? (my own interpretation)
- New requirement for the step size (to take steps with the proper length in each direction):
 - Error of the next step be conjugate / A-orthogonal to the direction of the current step

$$d_i^{\top} A e_{i+1} = 0$$

f

Second Order Methods

Ariyan Zare

Review

Gradient Descent: a 1st order method for optimization

Second order methods-Newton's method

Introduction to Newton's metho

Newton's method for zero finding

Newton's method fo optimization

Conjugate Gradients

Quadratic Form an Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Directions

Conjugate Gradients Method

References

This intuition comes from line search along the d_i direction:

$$\frac{d}{d\alpha}f(x_{i+1}) = 0$$
$$f'(x_{i+1})^{\top}\frac{d}{d\alpha}x_{i+1} = 0$$

Remember that $f'(x_{i+1}) = -r_{i+1}$ and $x_{i+1} = x_i + \alpha_i d_i$. So:

$$-r_{i+1}^{\top}d_i = 0$$

 $(Ae_{i+1})^{\top}d_i = 0$
 $e_{i+1}^{\top}A^{\top}d_i = 0$
 $d_i^{\top}Ae_{i+1} = 0$

・ロト・日本・日本・日本・日本・日本

Second Order Methods

Ariyan Zarei

Review

Gradient Descent: a 1st order method for optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form an Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Directions

Conjugate Gradients Method

References

• If we open up and solve for α_i we get:

$$\alpha_i = \frac{d_i^\top r_i}{d_i^\top A d_i}$$

Note that if the direction vectors were residuals (negative of gradients), this would be the same formula used by the Steepest Descent method. (α_i = (r_i^T r_i)/(r_i^T Ar_i)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

This procedure computes x* in n steps.

Second Order Methods

Ariyan Zarei

Review

Gradient Descent: a 1st order method fo optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form an Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Directions

Conjugate Gradients Method

References

- Gram-Schmidt Conjugation / Conjugate Gram-Schmidt process
 - A way to get A-orthogonal search directions d_i .
 - Algorithm
 - Start with a set of n independent vectors (like the unit vectors along coordinate axis) $u_0, u_1, \ldots, u_{n-1}$.
 - Set $d_0 = u_0$
 - for each *d_i* where *i* > 0, take *u_i* and subtract out any components that are not *A*-orthogonal to the previous d vectors.

$$d_i = u_i + \sum_{k=0}^{i-1} \beta_{ik} d_k$$

where for i > j:

$$eta_{ij} = -rac{u_i^ op A d_j}{d_j^ op A d_j}$$

Second Order Methods

Ariyan Zarei

Review

- Gradient Descent: a 1st order method fo optimization
- Second order methods-Newton's method
- Introduction to Newton's method
- Newton's method for zero finding
- Newton's method for optimization

Conjugate Gradients

- Quadratic Form and Linear System of Equations
- Steepest Descent Method
- Conjugacy and Conjugate Directions
- Conjugate Gradients Method
- References

- Conjugate Gradients Method is built upon all previous techniques and methods.
- We use the method of Conjugate Directions where our search directions are the conjugated of the residuals (or the gradients)
- That is why this algorithm is called Conjugate Gradients (Conjugated Gradients is much better as the paper suggests).

Second Order Methods

Ariyan Zarei

Review

Gradient Descent: a 1st order method for optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form and Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Direction

Conjugate Gradients Method

References

- We use *r_i* in the Gram-Schmidt process to get the search directions.
- Because of the orthogonality of the residuals and the fact that each residuals is a linear combination of previous residuals and Ad_{i-1}, Gram-Schmidt process (the summation) becomes a single term.
- Search directions can be calculated iteratively as each step runs.
- We can work around the math and find all the necessary equations for Conjugate Gradients method.

Second Order Methods

Ariyan Zare

Review

Gradient Descent: 1st order method for optimization

Second order methods-Newton's method

Introduction to Newton's metho

Newton's method fo zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form an Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Direction

Conjugate Gradients Method

References

$$d_0 = r_0 = b - Ax_0$$

$$\alpha_i = \frac{r_i^\top r_i}{d_i^\top A d_i}$$

$$x_{i+1} = x_i + \alpha_i d_i$$

$$r_{i+1} = r_i - \alpha_i A d_i$$

$$\beta_{i+1} = \frac{r_{i+1}^\top r_{i+1}}{r_i^\top r_i}$$

$$d_{i+1} = r_{i+1} + \beta_{i+1} d_i$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Second Order Methods

Ariyan Zare

Review

Gradient Descent: a 1st order method for optimization

Second order methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form an Linear System of Equations

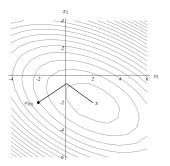
Steepest Descent Method

Conjugacy and Conjugate Direction

Conjugate Gradients Method

References

- Conjugate Gradient method is faster than Gradient Descent because of the conjugate search directions.
- It does not require calculating Hessian unlike Newton's method.



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References

Second Order Methods

Ariyan Zare

Review

Gradient Descent: a 1st order method for optimization

Second orde methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method f optimization

Conjugate Gradients

Quadratic Form an Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Directions

Conjugate Gradients Method

References

Draw graphs: link

- 2nd Order Optimization material: link
- GD in NN and issues: link
- Hessian for DL: link
- Algs to train NN: link
- Youtube videos for Newton method: link and link

- Intro to Newton method: link
- Taylor series: link
- Taylor series for Multivariate functions: link
- Conjugate Gradient Method: link

Second Order Methods

Ariyan Zare

Review

Gradient Descent: a 1st order method fo optimization

Second orde methods-Newton's method

Introduction to Newton's method

Newton's method for zero finding

Newton's method for optimization

Conjugate Gradients

Quadratic Form and Linear System of Equations

Steepest Descent Method

Conjugacy and Conjugate Direction

Conjugate Gradients Method

References

Thank you for your attention

I will post the slides to my homepage at http://vision.cs.arizona.edu/ariyanzarei/

(日) (四) (日) (日) (日)