
Third International Symposium on 3D Data Processing, Visualization and Transmission, June 2006 c© IEEE

Statistical Inference of Biological Structure and Point Spread Functions in
3D Microscopy

Joseph Schlecht† Kobus Barnard† Barry Pryor‡

†Computer Science Department ‡Plant Sciences Department
Univerisity of Arizona University of Arizona

Tucson, AZ 85721 Tucson, AZ 85721
{schlecht, kobus}@cs.arizona.edu bmpryor@u.arizona.edu

Abstract

We present a novel method for detecting and quantify-
ing 3D structure in stacks of microscopic images captured
at incremental focal lengths. We express the image data
as stochastically generated by an underlying model for bi-
ological specimen and the effects of the imaging system.
The method simultaneously fits a model for proposed struc-
ture and the imaging system’s parameters, which include a
model of the point spread function.

We demonstrate our approach by detecting spores in im-
age stacks ofAlternaria, a microscopic genus of fungus. The
spores are modeled as opaque ellipsoids and fit to the data
using statistical inference. Since the number of spores in the
data is not known, model selection is incorporated into the
fitting process. Thus, we develop a reversible jump Markov
chain Monte Carlo sampler to explore the parameter space.

Our results show that simultaneous statistical inference
of specimen and imaging models is useful for quantifying
biological structures in 3D microscopic images. In addi-
tion, we show that inferring a model of the imaging system
improves the overall fit of the specimen model to the data.

1. Introduction

In this paper we detail a new method for automatically
detecting and quantifying 3D structure of biological spec-
imen that counteracts the blurring effects of a microscopic
imaging system. Quantifying the structure of cells and or-
ganisms is important for many biological experiments, but
this process can be expensive and very time consuming
when done manually. A method to automatically detect,
quantify, and classify the 3D structure of specimen in mi-
croscopic images would enable high-throughput data anal-
ysis, improved experimental efficiency, and possibly lead to
increased frequency of scientific discoveries.

The challenges in creating such an algorithm for analyz-
ing microscopic data lie not only in the detection of struc-
ture, but in understanding the image formation process of
the microscope. Depending on the type of microscope used,
images of a specimen under view may contain a significant
amount of blur from out-of-focus regions. In a standard
compound microscope with high magnification, this is a re-
sult of a shallow depth of field. Thus, the optical system
of a microscope can make accurate localization of detected
structure in images more difficult.

To detect and quantify the structure of biological spec-
imen in microscopic images, we propose a model that
stochastically generates the observed data. A set of 3D ge-
ometrical objects model the structure of the specimen un-
der study, and a theoretical impulse response of the micro-
scope models the optical system. Using Bayesian statistical
inference and Markov chain Monte Carlo sampling, we fit
both of these models simultaneously to microscopic image
data with mutual benefit; information learned from inferred
specimen structure is used to learn model parameters of the
imaging system and vice versa.

The impulse response, or point spread function, of the
microscope’s optical system blurs the observed image data.
Learning a model of the point spread function (PSF) enables
an understanding of the image formation process in the mi-
croscope. This, in turn, permits us to hypothesize unblurred
images of the specimen and obtain a more accurate fit to its
structure.

Since a microscope captures multiple image sets over
time, we can learn its PSF in conjunction with fitting struc-
ture in many data sets at once. When sufficiently fit, we
could utilize the PSF to detect structure in future data sets
with less computation. Moreover, using a model to learn
the PSF from image data facilitates inferring structure that
has been imaged under a range of optical systems.

Fitting a geometrical model to microscopic image data
results in quantified information about a specimen’s struc-
ture, such as volume, count, and eccentricity of shape. This

1



(a) 36 of 102 in A1 (b) 48 of 102 in A1

(c) 13 of 82 in A2 (d) 53 of 82 in A2

Figure 1. Images from Alternaria 3D data sets A1

and A2. In each image, the PSF of the brightfield
transmitted-light microscope generated blur from
nearby focal planes.

information enables scientific morphological analysis, au-
tomatic species or type classification, linkage to gene ex-
pression data, and 3D visualization. A model based visu-
alization has significant advantages to standard surface de-
tection methods, including noise and blur elimination, and
reconstruction when data is missing.

1.1. 3D Microscopic Image Data

The data used in this research are 3D images ofAl-
ternaria, a genus of fungus, captured by a standard bright-
field transmitted-light microscope. The images are 3D in
the sense that the mycologist who captured them continu-
ously imaged the specimen while increasing the focal depth
of the microscope, a process commonly referred to as 3D
microscopy. Figure 1 shows images from two of these sets,
A1 andA2. Notice the significant blur in the images, a re-
sult of the optics in the transmitted-light microscope.

The general structure ofAlternaria is tree-like with vary-
ing branching patterns. It comprises tubular filaments,
known as hyphae, and ellipsoid-shaped reproductive spores
that are darkly pigmented. Branching typically occurs as a

bifurcation of the hyphae, but it may occur in the spores as
well. One of the goals of this research is to create a high-
throughput system for automatically quantifying reproduc-
tive spores in 3D images ofAlternaria.

1.2. Related work

It was recently shown that a 2D model of ellipses could
be inferred from images of cartilage cells formed under a
confocal microscope [2]. This analysis enabled quantifica-
tion of the number of cells in the image. However, because
the model is in two dimensions and the structure of the cells
exists in three, further quantitative analysis was not possi-
ble. To ameliorate this, a 3D model for fitting the cells was
proposed, but the method of inference resulted in poor per-
formance [1].

The optical system of a confocal microscope attempts
to minimize the aberrations, flare, and blurring potential of
its PSF, thus reducing blur in its images [6, 14]. Previous
studies in statistical inference of structure modeled the PSF
of a confocal microscope with a Gaussian function, but the
parameterization was obtained by preliminary, manual anal-
ysis of the image data [2, 1]. Furthermore, because of the
minimal blur in the data, their PSF model was less criti-
cal to a good fit of the structure than it would have been
under a standard transmitted-light microscope, such as the
one imaging our data.

Depending on the immersion medium and microscope,
a PSF can be measured and estimated by imaging a tiny
bead of material, such as oil or latex. The resulting mea-
surements can subsequently be used to deconvolve images
formed by the microscope [13]. However, performing the
measurements can be a very time consuming and tedious
process and the results are microscope dependent.

Efforts have been made to learn the structure of a PSF
without direct measurement for the sole purpose of image
restoration [5, 9]. Results of this work have been some-
what successful. However, the images were formed under
a confocal microscope. It has not been shown that these
methods can effectively deconvolve images from a bright-
field transmitted-light microscope.

2. Structure and Imaging Models

Our generative model for the 3D microscopic image data
comprises a model forAlternaria spores, the PSF of the
imaging system, and the background light intensity of the
brightfield microscope. What follows is a description of
each component in the model.
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2.1. Spore Model

Figure 1 shows thatAlternaria spores are elliptical in
shape and darkly pigmented, so we model them as opaque
ellipsoids. Thus, theith spore in the model has parameters

si = (x, y, z, a, b, c, ϕ, ϑ, ψ, λ) ,

wherex, y, z give the center of the spore in a 3D imag-
ing windowW ; a, b, c ∈ R

3+ give the semi-axis lengths;
ϕ, ϑ, ψ are Euler rotation angles and vary over[0, π]; λ ∈
[0, 1] represents the average opacity of the spore in the im-
age data.

Denote the space containing all parameterizations of the
ith spore asSi, and let the space forn spores beΨ(n) =
S1 × · · · × Sn. Then an ordered set ofn spores is given by

ψ(n) = (s1, · · · , sn) .

2.2. PSF Model

The image formation process in a microscope is a con-
volution of the true unobserved 3D image with the point
spread function, or impulse response, of the imaging sys-
tem. The PSF is the 3D responseh(x, y, z) of a point source
of light in the system. Using constraints from previous em-
pirical observations [13], we introduce a model for the PSF
of a transmitted light microscope.

Let h̃(·) be a model of the actual PSF in the imaging sys-
tem. Thex, y-plane in the space containing the model is de-
fined to be parallel to the focal plane and thez-axis aligned
with the optical axis of the microscope. The function is de-
fined as a sequence of weighted 2D Gaussians, each parallel
to thex, y-plane and centered on the z-axis. Thus, it is sym-
metric about thex, y-plane and around thez-axis.

Formally, we definẽh(·) as a mixed function

h̃(x, y, z) =
α|z|

√

2π (β |z| + γ)
e
− x2+y2

2(β |z|+γ) (1)

with x, y ∈ R
2 andz ∈ Z. The parameterγ gives the base

variance for the Gaussians, andβ scales the distance from
thex, y-plane. Thus, each Gaussian inh̃(·) has a variance
that is linear with respect to its distance from thex, y-plane.
α is the base in a geometric distribution used to weight the
Gaussians.

Denote the space over all PSF models asΦ, and let a
parameterization of the model be

φ = (α, β, γ).

An approximate geometric description of (1) is two
cones placed apex-to-apex at the origin of thex, y-plane.
The values within the cones are weighted 2D Gaussians par-
allel to thex, y-plane (figure 2).

z

y

z

x

0

Figure 2. Diagram of the PSF model h̃(x, y, z). The
x, y-plane is the focal plane of the microscope,
and the z-axis is aligned with the optical axis. The
2D Gaussians are stacked along the z-axis away
from the focal plane with linearly increasing vari-
ance and geometrically decreasing weights. A
Gaussian at distance z0 is illustrated.

2.3. Imaging Background

Alternaria in the 3D image data occupy a relatively small
region of the imaging window. Hence, many pixels in the
data are saturated with the intensity of light used by the
brightfield microscope. We denote the background inten-
sity of the imaging system asυ and define it over the range
Υ = [0, 1].

2.4. Image Model

Let Θ(n) = Ψ(n) × Φ × Υ be the parameter space over
multi-spore, PSF, and background models, and letθ(n) =
(ψ(n), φ, υ) be an instance of that space. Then the solution
space spanning all model configurations is

Ω =
⋃

n>0

n× Θ(n).

For any (n, θ(n)) ∈ Ω, we construct a model scene
Iθ(i, j, k), which is a hypothesis of the unobserved 3D im-
age data. Background pixels in the model scene have the
highest saturation with valueυ, and pixels belonging to the
lth spore with opacityλl have the valueυ (1 − λl).

Given a model scene, pixels in the 3D image data
I(i, j, k) are modeled as independent and Gaussian dis-
tributed with means and variances defined by

µIθ
(i, j, k) = Iθ ∗ ∗ ∗ ĥ (2)

σ2
Iθ

(i, j, k) = c1 |µIθ
(i, j, k) − υ| + c2 µIθ

(i, j, k), (3)
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where∗ ∗ ∗ denotes 3D convolution and̂h is the quantized
PSF model in (1).

The mean value for a pixel inI(·) is a weighted average
of the model scene pixel intensities by the PSF model. The
constantsc1 andc2 scale the variance in a linear combina-
tion of spore and pixel intensities. A spore’s pigment is not
uniform across occupying pixels, and spores with greater
opacity tend to have higher variability. The second term in
(3) approximates pixel intensity variations due to Poisson
noise in the imaging system. The scaling constants are set
to small values and obtained by preliminary analysis. We
found that the system is not very sensitive to them.

3. Model Inference

Given a stack ofAlternaria image dataI(i, j, k) in the
3D windowW , the task is to find the model(n, θ(n)) ∈ Ω
that best fits the data. To accomplish this, Bayesian statis-
tical inference is used; we define a probability distribution
over the solution space given the image data and find a max-
imum. Specifically, we define aposterior

p
(

n, θ(n) | I
)

= kp L
(

I | n, θ(n)
)

π
(

n, θ(n)
)

, (4)

wherekp is a normalization constant,L(· | ·) is the likeli-
hood of the image data, andπ(·) is the model prior.

The independence assumption among pixels in the
model of the image data results in a product of Gaussians
for the likelihood function. Using the image model means
(2) and variances (3), the likelihood is defined as

L
(

I | n, θ(n)
)

=
∏

i,j,k

σ−1
Iθ√
2π

e
− 1

2

»

I(i,j,k)−µIθ
(i,j,k)

σIθ

–2

. (5)

3.1 Model priors

The prior over the model spaceΩ assumes independence
between the spore and imaging models and is defined as

π
(

n, θ(n)
)

= πΨ

(

n, ψ(n)
)

πΦ(φ) πΥ(υ) . (6)

The priors for the imaging model parametersφ andυ
are i.i.d. Gaussian. The spores inAlternariagenerally have
the same shape, opacity and count, but their position and
orientation is quite varied. We integrate this information
into the spore model prior as follows.

The position of a spore ranges uniformly over the win-
dowW with volumeVW . The rotation angles are modeled
as independent and uniformly distributed over[0, π]. Since
the spore sizes tend to be roughly the same, with a major

axis and two minor axes of similar length, we define inde-
pendent Gaussians over them with meansµa for the major
axis andµbc for the two minor axes. We model the spore
opacity as a truncated Gaussian over(0, 1]. Thus, the den-
sity function for a sporesi is

f(si) = fx,y,z(si) fa,b,c(si) fϕ,ϑ,ψ(si) fλ(si), (7)

where

fx,y,z(si) =
1

VW
,

fa,b,c(si) =
σ−1
a σ−2

bc

(2π)
3
2

e
−

»

(ai−µa)2

2σ2
a

+
(bi−µbc)

2+(ci−µbc)2

2σ2
bc

–

,

fϕ,ϑ,ψ(si) =
1

π3
,

fλ(si) =
σ−1
λ√
2π

e
− 1

2

»

(λi−µλ)
σλ

–2

.

The existence of a spore inW follows a Poisson process,
son is Poisson distributed with intensityν. For this work,
the value ofν was set to10. Finally, we restrict the inter-
action between spores so they do not intersect. The spore
model prior is then

πΨ

(

n, ψ(n)
)

= knπ
νn e−ν

n!

n
∏

i=1

f(si)χ(si 0 sj 6=i), (8)

where knπ is a normalization constant for the truncated
Gaussians,⊢ denotes geometric intersection, andχ(·) is the
characteristic function giving1 for true and0 otherwise.

4. Inference via Sampling

Inferring the most likely model givenAlternaria image
data is a challenging task; the posterior (4) is a complex
distribution virtually impossible to evaluate analytically or
numerically. Thus, we employ Markov chain Monte Carlo
(MCMC) sampling to explore the model solution space in
search of a maximum under the posterior [3, 11].

The sampler iteratively generates random, unbiased
model samples from the solution spaceΩ. It consists of a
set of moves, or Markov chain, that create new model sam-
ples by proposing changes to parameters in a previous sam-
ple. The sampler moves fall into two categories: changes
to a spore, the PSF, or the background; and changes to the
number of spores in the model. The latter are referred to as
diffusionmoves and the formerjumpmoves [15].

At each iteration of the sampler, themth move is se-
lected for execution with probabilityr(m) and a new model
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(n, θ̃(n)) is proposed. In this paper, a uniform distribution
was used forr(·). Depending on how likely the new model
is under the posterior and to have been proposed, it is ac-
cepted or rejected. This is the Metropolis-Hastings (MH)
algorithm for MCMC [10, 8] and it is used for both diffu-
sion and jump moves.

4.1. Diffusion moves

The diffusion moves for modifying a spore and propos-
ing a new model are shift, resize, rotate, and opacity mod-
ification, as well as moves to update PSF and background
parameters. The proposal distributions for diffusion moves
are obtained by modifying the prior in (6). For parameters
updated in a move, we replace their subdensity in the prior
with a Gaussian that has means equal to corresponding pa-
rameters in the previously accepted model.

For example, the proposal distribution for randomly se-
lecting thejth spore in a model(n, θ(n)) and shifting its
position is given by

qshift

(

θ̃(n) | θ(n)
)

=
1

n

π
(

n, θ̃(n)
)

fx,y,z(s̃j)

σ−3
x,y,z

(2π)
3
2

e
−

(x̃j−xj)2+(ỹj−yj)2+(z̃j−zj)2

2 σ2
x,y,z , (9)

whereσ2
x,y,z is a small variance. The proposal distributions

for other diffusion moves are similarly constructed.
Under the MH algorithm for themth diffusion move, the

acceptance probability for a proposed model is

α
(

n, θ̃(n)
)

= min

{

1,
p(n, θ̃(n) | I) qm(θ(n) | θ̃(n))

p(n, θ(n) | I) qm(θ̃(n) | θ(n))

}

.

(10)
The definition is derived to maintain a detailed balance con-
dition in the Markov chain, which is a sufficient condition
for convergence to the posterior [11].

By expansion, most of the terms in (10), including the
normalization constants, cancel. Thus, the acceptance prob-
ability for a shift move of thejth spore becomes

α
(

n, θ̃(n)
)

= min

{

1,
L(I | n, θ̃(n)) fx,y,z(s̃j)

L(I | n, θ(n)) fx,y,z(sj)

∏

i6=j

χ(si 0 s̃j)







. (11)

As with the proposals, the acceptance probabilities for
other diffusion moves are similar; hence, their definitions
are omitted.

4.2. Jump moves

The jump moves in the sampler are birth and death of a
spore. In both moves, the dimensionality of the model is
modified as a spore is added to or removed from the model.
For a birth move, the proposal distribution for a new spores̃

is defined as the normalized spore density (7) in the model
prior

qbirth(s̃) = kπ f(s̃). (12)

During a death move, a spore is randomly selected for dele-
tion, so a proposal distribution is not needed.

In order to use the MH algorithm for jump moves, we re-
define the acceptance probability. Following the guidelines
for reversible-jump MCMC [7], the acceptance probability
for a birth move becomes

α
(

n+ 1, θ̃(n+1)
)

= min

{

1,
p(n+ 1, θ̃(n+1) | I)

p(n, θ(n) | I)

r(death)

r(birth) qbirth(s̃)

∣

∣

∣

∣

∣

∂(θ̃(n+1))

∂(θ(n), s̃)

∣

∣

∣

∣

∣

}

. (13)

Since the change in dimensionality is a one-to-one map-
ping from(s̃, θ(n)) → θ̃(n+1) and a uniform distribution is
used forr(·), the Jacobian is1 and the move probabilities
cancel. Thus, the acceptance probability for birth reduces
to

α
(

n+ 1, θ̃(n+1)
)

= min

{

1,
L(I | n+ 1, θ̃(n+1))

L(I | n, θ(n))

ν

n+ 1

n
∏

i=1

χ(si 0 s̃)

}

. (14)

Because birth and death moves are dual, the acceptance
probability for a death move is the inverse of the second
argument to the minimum function in (14).

As with the diffusion moves, the jump move acceptance
probabilities maintain the detailed balance condition [7].
Thus, the posterior will be the stationary distribution of the
trans-dimensional Markov chain followed by the sampler.

4.3. Data-driven Birth Move

Since the prior is uniform over spore position and ori-
entation, birth proposals based on it have a high rejection
rate. This causes an increase in the number of iterations re-
quired for the sampler to converge. To solve this problem,
we improve the birth proposals by doing preliminary data
analysis to construct a more informative proposal distribu-
tion, so called data-driven MCMC [15].
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The replacement proposal distribution for birth moves is
generated from theAlternaria image data. We apply sur-
face detection and a Hough transform for ellipsoids to ob-
tain rough estimates of spores in the data. The estimates are
subsequently collected into a spore likelihood table, which
is normalized and used as the new proposal distribution.

The surface detector is an extension of the standard
Canny edge detection algorithm [4] to three-dimensions.
The gradient of a 3D Gaussian is convolved with the image
data to produce 3D pixel gradient vectors. We apply non-
maximal suppression and hysteresis to the resulting vectors
to detect surface points.

A Hough transform is used to find ellipsoids from the de-
tected surface. We reduce the number of parameters defin-
ing a spore from9 to 7 by assuming equal minor axes and
use a very coarse parameter quantization for the spores. Al-
though this results in coarse estimates of spores in the data,
it reduces the size and complexity of the Hough transform.
Furthermore, coarse estimates are tolerable because diffu-
sion moves in the sampler will perfect the fit of proposed
spores.

We construct the Hough transform by iterating over the
quantized spores at each surface point and incrementing a
counter in the Hough arrayH. The counts in the array are
normalized to produce a likelihood over spores. Thus, we
redefine the birth proposal distribution as

qbirth(s) = H [is] , (15)

whereis is the index into the normalized Hough array that
has minimal Euclidean parameter distance to the spores.

5. Results

We evaluated the effectiveness of the model sampler on
Alternaria image setsA1 andA2. In addition, we tested
the sampler on synthetic spore data to obtain a comparative
measure for its performance on ideal data.

5.1. Synthetic Data Evaluation

The synthetic data were randomly generated from our
model of the imaging system and spores. We created ten
data sets and optically sectioned them into80 images of size
300×300 pixels. Each set contained10 randomly generated
spores.

The MCMC sampler was run for3000 iterations at a res-
olution of20%, followed by1000 iterations at50%. It was
run on lower resolutions of the images in order to decrease
run-time. This process was repeated four times on all the
data sets using a different random seed each time. The av-
erage number of spores correctly fit to a data set was8. The
results for each set are shown in figure 3.
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Figure 3. Mean number of spores correctly fit to
the synthetic data sets, standard deviation bars
are shown. Each synthetic set contained 10
spores and was run with four different random
seeds.

Difficulties in detection arose when two or more spores
in the data were nearly parallel in their major axes and very
close together, in which case one model spore was some-
times fit to both. Occasionally, multiple model spores were
fit to one in the data. In a few cases, no proposal was made
for a spore in the data, most likely because it had low like-
lihood in the birth proposal distribution and would require
more iterations to be proposed.

5.2.Alternaria Evaluation

Two sets ofAlternaria image stacks were evaluated:A1

composed of102 images of size800×800 pixels andA2

with 80 images of size700×700. Images of these sets can
be seen in figure 1. The number of spores in the data sets
were manually counted and found to be17 and21 for A1

andA2 respectively.
We ran the sampler on bothAlternaria data sets for500

iterations at a resolution of20%. As with the synthetic eval-
uation, four instances of the sampler were run on the data
sets, each time with a different random seed. Figure 4 shows
a 3D rendering of a fit model for each data set next to the
detectedAlternaria surface used for generating data-driven
birth proposals.

In A1 the average number of spores detected was6 and
approximately9 for A2. While we did not achieve80%
accuracy, as in the synthetic case, the results are still note-
worthy considering the amount of non-spore structure and
substantial blur in the data.

The average inferred background intensity forA1 andA2

was0.78 and0.75 with a negligible standard deviation. Ta-
ble 1 gives the inferred PSF model parameters for the data
sets. The standard deviation is relatively high for PSF pa-
rametersβ andγ. This is most likely due to the sampler

6



(a) Surface of A1 (b) Spores in A1

(c) Surface of A2 (d) Spores in A2

Figure 4. Reconstructed surface of Alternaria in
the image stacks and 3D renderings of corre-
sponding inferred spore models. The surface de-
tection algorithm for data-driven birth proposals
generated the views in (a) and (c). Perceived struc-
ture in these images is known only to the viewer.
Sub-figures (b) and (d) represent detected spore
structure.

adding variance to the PSF in order to accommodate the
large quantity of non-spore structure in the images.

We tested the effect of using our model of the PSF for
fitting spores versus using a 3D Gaussian and a delta func-
tion. In the case of the Gaussian, aσ of 0.6 was chosen for
all dimensions by empirical analysis of theAlternaria im-
age data. This is consistent with work done previously to
approximate the PSF [2, 1, 13].

Table 2 lists the average number of spores detected using
each of the PSFs during model inference. Figure 5 shows
images inA1 compared to inferred model scene images that
are convolved with each of the PSF types. These results
combined show that fitting our model of the PSF to the im-
age data most closely resembles the imaging effects of the

α β γ

mean stdev mean stdev mean stdev
A1 0.93 0.001 0.82 0.44 1.31 0.30

A2 0.93 0.030 1.06 0.14 1.35 0.33

Table 1. Mean PSF model parameters inferred
from the Alternaria data from four random starting
states. As expected, the fit parameters are simi-
lar for the data sets, which were imaged under the
same microscope.

Model PSF Gaussian PSF Delta PSF

mean stdev mean stdev mean stdev
A1 6.0 0.9 4.75 0.4 2.5 0.5

A2 8.75 0.8 7.25 2.9 6.25 2.2

Table 2. Mean number of spores correctly fit to Al-
ternaria data using a delta function, Gaussian, and
our model as the PSF. Four random starting states
were used for each data set. It is clear that fitting
our model of the PSF improves spore detection.

microscope and enables a more accurate estimate of struc-
ture in the images.

6. Future Work

We plan to extend this work to model the overall struc-
ture ofAlternariawith a grammar of its growth. Our idea is
to fit substructures in the data, such as spores and hyphae,
under the constraint that their combined structure is an in-
stance of the grammar. One type of grammar that may be
useful for this task is a stochastic L-system [12], which is
commonly used for plant growth models to generate realis-
tic instances of plants in computer graphics.

Currently, the sampler fits a PSF model and the structure
in only one data set at a time. Although the learned PSF can
be used when fitting other data sets sequentially, the sampler
will be extended to fit a PSF and multiple data sets simulta-
neously. This will reduce the possibility of over-fitting the
PSF.
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PSF model is substantively closer to the true PSF than a Gauss ian and a delta function.
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